Commuting varieties of semisimple Lie algebras and algebraic groups

R. W. Richardson

Compositio Mathematica (1979)

  • Volume: 38, Issue: 3, page 311-327
  • ISSN: 0010-437X

How to cite

top

Richardson, R. W.. "Commuting varieties of semisimple Lie algebras and algebraic groups." Compositio Mathematica 38.3 (1979): 311-327. <http://eudml.org/doc/89407>.

@article{Richardson1979,
author = {Richardson, R. W.},
journal = {Compositio Mathematica},
keywords = {Semisimple Lie Algebras; Irreducible Algebraic Variety; Reductive Lie Algebras; Simply Connected Semisimple Algebraic Groups; Cartan Subalgebra},
language = {eng},
number = {3},
pages = {311-327},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Commuting varieties of semisimple Lie algebras and algebraic groups},
url = {http://eudml.org/doc/89407},
volume = {38},
year = {1979},
}

TY - JOUR
AU - Richardson, R. W.
TI - Commuting varieties of semisimple Lie algebras and algebraic groups
JO - Compositio Mathematica
PY - 1979
PB - Sijthoff et Noordhoff International Publishers
VL - 38
IS - 3
SP - 311
EP - 327
LA - eng
KW - Semisimple Lie Algebras; Irreducible Algebraic Variety; Reductive Lie Algebras; Simply Connected Semisimple Algebraic Groups; Cartan Subalgebra
UR - http://eudml.org/doc/89407
ER -

References

top
  1. [1] P. Bala and R. Carter: Unipotent elements in semisimple algebraic groups. I. Math. Proc. Cambridge Philos. Soc.79 (1976) 401-425. Zbl0364.22006MR417306
  2. [2] A. Borel: Linear Algebraic Groups. Benjamin, New York, 1969. Zbl0186.33201MR251042
  3. [3] A. Borel and J.-P. Serre: Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv.39 (1964) 111-164. Zbl0143.05901MR181643
  4. [4] N. Bourbaki: Éléments de mathematique; Groupes et algèbres de Lie, Chap. 7 et 8. Hermann, Paris, 1975. Zbl0505.22006MR453824
  5. [5] J. Dixmier: Polarisations dans les algebras de Lie semi-simple complexes. Bull. Sci. Math.99 (1975) 45-63. Zbl0314.17009MR435165
  6. [6] M. Gerstenhaber: On dominance and varieties of commuting matrices. Ann. of Math. (2) 73 (1961) 324-348. Zbl0168.28201MR132079
  7. [7] D. Johnston and R. Richardson: Conjugacy classes in parabolic subgroups of semisimple algebraic groups, II. Bull. London Math. Soc.9 (1977) 245-250. Zbl0375.22008MR480766
  8. [8] B. Kostant: On the conjugacy of real Cartan subalgebras. I. Proc. Nat. Acad. Sci. USA41 (1955) 967-970. Zbl0065.26901MR73928
  9. [9] R. Richardson: Deformations of Lie subgroups and the variation of isotropy supgroups. Acta Math.129 (1972) 35-73. Zbl0242.22020MR299723
  10. [10] R. Richardson: Conjugacy classes of parabolic subgroups in semisimple algebraic groups. Bull. London Math. Soc.6 (1974) 21-24. Zbl0287.20036MR330311
  11. [11] T. Springer and R. Steinberg: Conjugacy classes, in Seminar in Algebraic Groups and Related Finite Groups, ed. by A. Borel et al., Lecture Notes in Mathematics131, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0249.20024MR268192

Citations in EuDML Documents

top
  1. Oksana Yakimova, Surprising properties of centralisers in classical Lie algebras
  2. Jean-Yves Charbonnel, Propriétés (Q) et (C). Variété commutante
  3. Dmitrii I. Panyushev, The jacobian modules of a representation of a Lie algebra and geometry of commuting varieties
  4. Michaël Bulois, Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple
  5. T. Levasseur, J. T. Stafford, The kernel of an homomorphism of Harish-Chandra

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.