Exact adaptive pointwise estimation on Sobolev classes of densities
ESAIM: Probability and Statistics (2001)
- Volume: 5, page 1-31
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topButucea, Cristina. "Exact adaptive pointwise estimation on Sobolev classes of densities." ESAIM: Probability and Statistics 5 (2001): 1-31. <http://eudml.org/doc/104273>.
@article{Butucea2001,
abstract = {The subject of this paper is to estimate adaptively the common probability density of $n$ independent, identically distributed random variables. The estimation is done at a fixed point $x_\{0\}\in \mathbb \{R\}$, over the density functions that belong to the Sobolev class $W_n(\beta ,L)$. We consider the adaptive problem setup, where the regularity parameter $\beta $ is unknown and varies in a given set $B_\{n\}$. A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.},
author = {Butucea, Cristina},
journal = {ESAIM: Probability and Statistics},
keywords = {density estimation; exact asymptotics; pointwise risk; sharp adaptive estimator; sharp adaptive estimators},
language = {eng},
pages = {1-31},
publisher = {EDP-Sciences},
title = {Exact adaptive pointwise estimation on Sobolev classes of densities},
url = {http://eudml.org/doc/104273},
volume = {5},
year = {2001},
}
TY - JOUR
AU - Butucea, Cristina
TI - Exact adaptive pointwise estimation on Sobolev classes of densities
JO - ESAIM: Probability and Statistics
PY - 2001
PB - EDP-Sciences
VL - 5
SP - 1
EP - 31
AB - The subject of this paper is to estimate adaptively the common probability density of $n$ independent, identically distributed random variables. The estimation is done at a fixed point $x_{0}\in \mathbb {R}$, over the density functions that belong to the Sobolev class $W_n(\beta ,L)$. We consider the adaptive problem setup, where the regularity parameter $\beta $ is unknown and varies in a given set $B_{n}$. A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.
LA - eng
KW - density estimation; exact asymptotics; pointwise risk; sharp adaptive estimator; sharp adaptive estimators
UR - http://eudml.org/doc/104273
ER -
References
top- [1] A. Barron, L. Birge and P. Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1995) 301-413. Zbl0946.62036MR1679028
- [2] O.V. Besov, V.L. Il’in and S.M. Nikol’skii, Integral representations of functions and imbedding theorems. J. Wiley, New York (1978).
- [3] L. Birge and P. Massart, From model selection to adaptive estimation, Festschrift fur Lucien Le Cam. Springer (1997) 55-87. Zbl0920.62042MR1462939
- [4] L.D. Brown and M.G. Low, A constrained risk inequality with application to nonparametric functional estimation. Ann. Statist. 24 (1996) 2524-2535. Zbl0867.62023MR1425965
- [5] C. Butucea, The adaptive rates of convergence in a problem of pointwise density estimation. Statist. Probab. Lett. 47 (2000) 85-90. Zbl0977.62038MR1745667
- [6] C. Butucea, Numerical results concerning a sharp adaptive density estimator. Comput. Statist. 1 (2001). Zbl1007.62026MR1862507
- [7] L. Devroye and G. Lugosi, A universally acceptable smoothing factor for kernel density estimates. Ann. Statist. 24 (1996) 2499-2512. Zbl0867.62024MR1425963
- [8] D.L. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. R. Stat. Soc. Ser. B Stat. Methodol. 57 (1995) 301-369. Zbl0827.62035MR1323344
- [9] D.L. Donoho, I. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Statist. 24 (1996) 508-539. Zbl0860.62032MR1394974
- [10] D.L. Donoho and M.G. Low, Renormalization exponents and optimal pointwise rates of convergence. Ann. Statist. 20 (1992) 944-970. Zbl0797.62032MR1165601
- [11] S.Yu. Efromovich, Nonparametric estimation of a density with unknown smoothness. Theory Probab. Appl. 30 (1985) 557-568. Zbl0593.62034
- [12] S.Yu. Efromovich and M.S. Pinsker, An adaptive algorithm of nonparametric filtering. Automat. Remote Control 11 (1984) 1434-1440. Zbl0637.93069
- [13] A. Goldenshluger and A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 (1997) 135-170. Zbl0892.62018MR1466625
- [14] G.K. Golubev, Adaptive asymptotically minimax estimates of smooth signals. Problems Inform. Transmission 23 (1987) 57-67. Zbl0636.94005MR893970
- [15] G.K. Golubev, Quasilinear estimates for signals in . Problems Inform. Transmission 26 (1990) 15-20. Zbl0723.62026MR1051584
- [16] G.K. Golubev, Nonparametric estimation of smooth probability densities in . Problems Inform. Transmission 28 (1992) 44-54. Zbl0785.62039MR1163140
- [17] G.K. Golubev and M. Nussbaum, Adaptive spline estimates in a nonparametric regression model. Theory Probab. Appl. 37 (1992) 521-529. Zbl0787.62044MR1214361
- [18] I.A. Ibragimov and R.Z. Hasminskii, Statistical estimation: Asymptotic theory. Springer-Verlag, New York (1981). Zbl0467.62026MR620321
- [19] A. Juditsky, Wavelet estimators: Adapting to unknown smoothness. Math. Methods Statist. 6 (1997) 1-25. Zbl0871.62039MR1456644
- [20] G. Kerkyacharian and D. Picard, Density estimation by kernel and wavelet method, optimality in Besov space. Statist. Probab. Lett. 18 (1993) 327-336. Zbl0793.62019MR1245704
- [21] G. Kerkyacharian, D. Picard and K. Tribouley, adaptive density estimation. Bernoulli 2 (1996) 229-247. Zbl0858.62031MR1416864
- [22] J. Klemelä and A.B. Tsybakov, Sharp adaptive estimation of linear functionals, Prépublication 540. LPMA Paris 6 (1999). Zbl1043.62029
- [23] O.V. Lepskii, On a problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1990) 454-466. Zbl0725.62075MR1091202
- [24] O.V. Lepskii, Asymptotically minimax adaptive estimation I: Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36 (1991) 682-697. Zbl0776.62039MR1147167
- [25] O.V. Lepskii, On problems of adaptive estimation in white Gaussian noise. Advances in Soviet Math. Amer. Math. Soc. 12 (1992b) 87-106. Zbl0783.62061MR1191692
- [26] O.V. Lepski and B.Y. Levit, Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123-156. Zbl1103.62332MR1643256
- [27] O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947. Zbl0885.62044MR1447734
- [28] O.V. Lepski and V.G. Spokoiny, Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 (1997) 2512-2546. Zbl0894.62041MR1604408
- [29] D. Pollard, Convergence of Stochastic Processes. Springer-Verlag, New York (1984). Zbl0544.60045MR762984
- [30] A.B. Tsybakov, Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. Ann. Statist. 26 (1998) 2420-2469. Zbl0933.62028MR1700239
- [31] S. Van de Geer, A maximal inequality for empirical processes, Technical Report TW 9505. University of Leiden, Leiden (1995).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.