Model selection for (auto-)regression with dependent data

Yannick Baraud; F. Comte; G. Viennet

ESAIM: Probability and Statistics (2001)

  • Volume: 5, page 33-49
  • ISSN: 1292-8100

Abstract

top
In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows’ C p . We state non asymptotic risk bounds for our estimator in some Ł 2 -norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form α , p , ( R ) with p 1 .

How to cite

top

Baraud, Yannick, Comte, F., and Viennet, G.. "Model selection for (auto-)regression with dependent data." ESAIM: Probability and Statistics 5 (2001): 33-49. <http://eudml.org/doc/104278>.

@article{Baraud2001,
abstract = {In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows’ $C_p$. We state non asymptotic risk bounds for our estimator in some $Ł_2$-norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form $\{\mathcal \{B\}\}_\{\alpha ,p,\infty \}(R)$ with $p\ge 1$.},
author = {Baraud, Yannick, Comte, F., Viennet, G.},
journal = {ESAIM: Probability and Statistics},
keywords = {nonparametric regression; least-squares estimator; adaptive estimation; autoregression; mixing processes},
language = {eng},
pages = {33-49},
publisher = {EDP-Sciences},
title = {Model selection for (auto-)regression with dependent data},
url = {http://eudml.org/doc/104278},
volume = {5},
year = {2001},
}

TY - JOUR
AU - Baraud, Yannick
AU - Comte, F.
AU - Viennet, G.
TI - Model selection for (auto-)regression with dependent data
JO - ESAIM: Probability and Statistics
PY - 2001
PB - EDP-Sciences
VL - 5
SP - 33
EP - 49
AB - In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows’ $C_p$. We state non asymptotic risk bounds for our estimator in some $Ł_2$-norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form ${\mathcal {B}}_{\alpha ,p,\infty }(R)$ with $p\ge 1$.
LA - eng
KW - nonparametric regression; least-squares estimator; adaptive estimation; autoregression; mixing processes
UR - http://eudml.org/doc/104278
ER -

References

top
  1. [1] H. Akaike, Information theory and an extension of the maximum likelihood principle, in Proc. 2nd International Symposium on Information Theory, edited by P.N. Petrov and F. Csaki. Akademia Kiado, Budapest (1973) 267-281. Zbl0283.62006MR483125
  2. [2] H. Akaike, A new look at the statistical model identification. IEEE Trans. Automat. Control 19 (1984) 716-723. Zbl0314.62039MR423716
  3. [3] P. Ango Nze, Geometric and subgeometric rates for markovian processes in the neighbourhood of linearity. C. R. Acad. Sci. Paris 326 (1998) 371-376. Zbl0918.60052MR1648493
  4. [4] Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. Zbl0997.62027MR1777129
  5. [5] Y. Baraud, Model selection for regression on a random design, Preprint 01-10. DMA, École Normale Supérieure (2001). MR1918295
  6. [6] Y. Baraud, F. Comte and G. Viennet, Adaptive estimation in autoregression or β -mixing regression via model selection. Ann. Statist. (to appear). Zbl1012.62034MR1865343
  7. [7] A. Barron, L. Birgé and P. Massart, Risks bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. Zbl0946.62036MR1679028
  8. [8] L. Birgé and P. Massart, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. Zbl1004.41006MR1848840
  9. [9] L. Birgé and Y. Rozenholc, How many bins must be put in a regular histogram. Working paper (2001). Zbl1136.62329
  10. [10] A. Cohen, I. Daubechies and P. Vial, Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. Zbl0795.42018MR1256527
  11. [11] I. Daubechies, Ten lectures on wavelets. SIAM: Philadelphia (1992). Zbl0776.42018MR1162107
  12. [12] R.A. Devore and C.G. Lorentz, Constructive Approximation. Springer-Verlag (1993). Zbl0797.41016MR1261635
  13. [13] D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. Zbl0935.62041MR1635414
  14. [14] P. Doukhan, Mixing properties and examples. Springer-Verlag (1994). Zbl0801.60027MR1312160
  15. [15] M. Duflo, Random Iterative Models. Springer, Berlin, New-York (1997). Zbl0868.62069MR1485774
  16. [16] M. Hoffmann, On nonparametric estimation in nonlinear AR(1)-models. Statist. Probab. Lett. 44 (1999) 29-45. Zbl0954.62049MR1706307
  17. [17] I.A. Ibragimov, On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition I: Necessary conditions. Theory Probab. Appl. 10 (1965) 85-106. Zbl0131.18101MR174091
  18. [18] M. Kohler, On optimal rates of convergence for nonparametric regression with random design, Working Paper. Stuttgart University (1997). 
  19. [19] A.R. Kolmogorov and Y.A. Rozanov, On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl. 5 (1960) 204-207. Zbl0106.12005
  20. [20] K.C. Li, Asymptotic optimality for C p , C l cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15 (1987) 958-975. Zbl0653.62037MR902239
  21. [21] G.G. Lorentz, M. von Golitschek and Y. Makokov, Constructive Approximation, Advanced Problems. Springer, Berlin (1996). Zbl0910.41001MR1393437
  22. [22] C.L. Mallows, Some comments on C p . Technometrics 15 (1973) 661-675. Zbl0269.62061
  23. [23] A. Meyer, Quelques inégalités sur les martingales d’après Dubins et Freedman, Séminaire de Probabilités de l’Université de Strasbourg. Vols. 68/69 (1969) 162-169. Zbl0211.21802
  24. [24] D.S. Modha and E. Masry, Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory 42 (1996) 2133-2145. Zbl0868.62015MR1447519
  25. [25] D.S. Modha and E. Masry, Memory-universal prediction of stationary random processes. IEEE Trans. Inform. Theory 44 (1998) 117-133. Zbl0938.62106MR1486652
  26. [26] M. Neumann and J.-P. Kreiss, Regression-type inference in nonparametric autoregression. Ann. Statist. 26 (1998) 1570-1613. Zbl0935.62049MR1647701
  27. [27] B.T. Polyak and A. Tsybakov, A family of asymptotically optimal methods for choosing the order of a projective regression estimate. Theory Probab. Appl. 37 (1992) 471-481. Zbl0806.62031MR1214355
  28. [28] R. Shibata, Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika 63 (1976) 117-126. Zbl0358.62048
  29. [29] R. Shibata, An optimal selection of regression variables. Biometrika 68 (1981) 45-54. Zbl0464.62054MR614940
  30. [30] S. Van de Geer, Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist. 23 (1995) 1779-1801. Zbl0852.60019MR1370307
  31. [31] V.A. Volonskii and Y.A. Rozanov, Some limit theorems for random functions. I. Theory Probab. Appl. 4 (1959) 179-197. Zbl0092.33502MR105741

Citations in EuDML Documents

top
  1. Eva Löcherbach, Dasha Loukianova, Oleg Loukianov, Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
  2. Pascal Massart, Sélection de modèle : de la théorie à la pratique
  3. Marie Sauvé, Histogram selection in non Gaussian regression
  4. Eva Löcherbach, Dasha Loukianova, Oleg Loukianov, Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
  5. Yannick Baraud, Lucien Birgé, Estimating composite functions by model selection

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.