Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach; Dasha Loukianova; Oleg Loukianov

ESAIM: Probability and Statistics (2011)

  • Volume: 15, page 197-216
  • ISSN: 1292-8100

Abstract

top
Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in stationary regime neither to be exponentially β-mixing. This is possible thanks to the use of a new polynomial inequality in the ergodic theorem [E. Löcherbach, D. Loukianova and O. Loukianov, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425–449].

How to cite

top

Löcherbach, Eva, Loukianova, Dasha, and Loukianov, Oleg. "Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process." ESAIM: Probability and Statistics 15 (2011): 197-216. <http://eudml.org/doc/277136>.

@article{Löcherbach2011,
abstract = {Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in stationary regime neither to be exponentially β-mixing. This is possible thanks to the use of a new polynomial inequality in the ergodic theorem [E. Löcherbach, D. Loukianova and O. Loukianov, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425–449].},
author = {Löcherbach, Eva, Loukianova, Dasha, Loukianov, Oleg},
journal = {ESAIM: Probability and Statistics},
keywords = {diffusion process; adaptive estimation; regeneration method; mean square estimator; model selection; deviation inequalities},
language = {eng},
pages = {197-216},
publisher = {EDP-Sciences},
title = {Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process},
url = {http://eudml.org/doc/277136},
volume = {15},
year = {2011},
}

TY - JOUR
AU - Löcherbach, Eva
AU - Loukianova, Dasha
AU - Loukianov, Oleg
TI - Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - 197
EP - 216
AB - Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in stationary regime neither to be exponentially β-mixing. This is possible thanks to the use of a new polynomial inequality in the ergodic theorem [E. Löcherbach, D. Loukianova and O. Loukianov, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425–449].
LA - eng
KW - diffusion process; adaptive estimation; regeneration method; mean square estimator; model selection; deviation inequalities
UR - http://eudml.org/doc/277136
ER -

References

top
  1. [1] G. Banon, Nonparametric identification for diffusion processes. SIAM J. Control. Optim.16 (1978) 380–395. Zbl0404.93045MR492159
  2. [2] Y. Baraud, F. Comte and G. Viennet, Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Stat.29 (2001) 839–875. Zbl1012.62034MR1865343
  3. [3] Y. Baraud, F. Comte and G. Viennet, Model selection for (auto-)regression with dependent data. ESAIM: P&S 5 (2001) 33–49. Zbl0990.62035MR1845321
  4. [4] A. Barron, L. Birgé and P. Massart, Risks bounds for model selection via penalization. Prob. Th. Rel. Fields113 (1999) 301–413. Zbl0946.62036MR1679028
  5. [5] F. Comte, V. Genon-Catalot and Y. Rozenholc, Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli13 (2007) 514–543. Zbl1127.62067MR2331262
  6. [6] A. Dalalyan, Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Stat.33 (2005) 507–2528. Zbl1084.62079MR2253093
  7. [7] A.S. Dalalyan and Yu.A. Kutoyants, Asymptotically efficient trend coefficient estimation for ergodic diffusion. Math. Meth. Stat.11 (2002) 402–427. MR1979742
  8. [8] S. Delattre, M. Hoffmann and M. Kessler, Dynamics adaptive estimation of a scalar diffusion. Prpublication PMA-762, Univ. Paris 6 (2002). Available at www.proba.jussieu.fr/mathdoc/preprints/. Mathematical Reviews (MathSciNet): MR1895888 Project Euclid: euclid.bj/1078866865. MR1895888
  9. [9] L. Galtchouk and S. Pergamenschikov, Sequential nonparametric adaptive estimation of the drift coefficient in the diffusion processes. Math. Meth. Stat.10 (2001) 316–330. Zbl1005.62070MR1867163
  10. [10] M. Hoffmann, Adaptive estimation in diffusion processes. Stochastic Processes Appl.79 (1999) 135–163. Zbl1043.62528MR1670522
  11. [11] Yury A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer Series in Statistics. London: Springer (2004). Zbl1038.62073MR2144185
  12. [12] O. Lepskii, One problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl.35 (1999) 459–470. Zbl0745.62083MR1091202
  13. [13] G.G. Lorentz, M. von Golitschek and Y. Makovoz, Constructive approximation: advanced problems. Grundlehren der Mathematischen Wissenschaften 304. Berlin: Springer (1996). Zbl0910.41001MR1393437
  14. [14] D. Loukianova and O. Loukianov, Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions. Ann. Inst. Henri Poincaré44 (2008) 771–786. Zbl1182.62166MR2446297
  15. [15] E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl.118 (2008) 301–1321. Zbl1202.60122MR2427041
  16. [16] E. Löcherbach, D. Loukianova and O. Loukianov, Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times. Ann. Inst. H. Poincaré Probab. Statist.47 (2011) 425–449. Zbl1220.60045MR2814417
  17. [17] T.D. Pham, Nonparametric estimation of the drift coefficient in the diffusion equation. Math. Operationsforsch. Statist., Ser. Statistics 1 (1981) 61–73. Zbl0485.62089MR607955
  18. [18] B.L.S. Prakasa Rao, Statistical Inference for Diffusion Type Processes. London: Edward Arnold. MR1717690 (1999) Zbl0952.62077MR1717690
  19. [19] D. Revuz and M. Yor, Continuous martingales and Brownian motion. 3rd ed. Grundlehren der Mathematischen Wissenschaften 293. Berlin: Springer (2005). Zbl1087.60040
  20. [20] V.G. Spokoiny, Adaptive drift estimation for nonparametric diffusion model. Ann. Stat.28 (2000) 815–836. Zbl1105.62330MR1792788
  21. [21] A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl.70 (1997) 115–127. Zbl0911.60042MR1472961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.