Density estimation for one-dimensional dynamical systems

Clémentine Prieur

ESAIM: Probability and Statistics (2001)

  • Volume: 5, page 51-76
  • ISSN: 1292-8100

Abstract

top
In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.

How to cite

top

Prieur, Clémentine. "Density estimation for one-dimensional dynamical systems." ESAIM: Probability and Statistics 5 (2001): 51-76. <http://eudml.org/doc/104279>.

@article{Prieur2001,
abstract = {In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.},
author = {Prieur, Clémentine},
journal = {ESAIM: Probability and Statistics},
keywords = {dynamical systems; decay of correlations; invariant probability; stationary sequences; Lindeberg theorem; central limit theorem; bias; nonparametric estimation; $s$-weakly and $a$-weakly dependent},
language = {eng},
pages = {51-76},
publisher = {EDP-Sciences},
title = {Density estimation for one-dimensional dynamical systems},
url = {http://eudml.org/doc/104279},
volume = {5},
year = {2001},
}

TY - JOUR
AU - Prieur, Clémentine
TI - Density estimation for one-dimensional dynamical systems
JO - ESAIM: Probability and Statistics
PY - 2001
PB - EDP-Sciences
VL - 5
SP - 51
EP - 76
AB - In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.
LA - eng
KW - dynamical systems; decay of correlations; invariant probability; stationary sequences; Lindeberg theorem; central limit theorem; bias; nonparametric estimation; $s$-weakly and $a$-weakly dependent
UR - http://eudml.org/doc/104279
ER -

References

top
  1. [1] A. Amroun, Systèmes dynamiques perturbés. Sur une classe de fonctions zéta dynamiques, Thèse de Doctorat de l’Université Paris 6, Spécialité Mathématique (1995). 
  2. [2] P. Ango Nze and P. Doukhan, Non-parametric Minimax estimation in a weakly dependent framework I: Quadratic properties. Math. Methods Statist. 5-4 (1996) 404-423. Zbl0893.62024MR1443126
  3. [3] V. Baladi, M. Benedicks and V. Maume–Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps. Ann. E.N.S. (to appear). Zbl1037.37003
  4. [4] A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151-180. Zbl0976.37019MR1743768
  5. [5] D. Bosq and D. Guégan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Statist. Probab. Lett. 25 (1995) 201-212. Zbl0841.62028MR1369514
  6. [6] D. Bosq and J.P. Lecoutre, Théorie de l’estimation fonctionnelle. Collection “Économie et statistiques avancées”. Série : École Nationale de la Statistique et de l’Administration Économique et Centre d’Études des Programmes Economiques. Economica (1987). 
  7. [7] A. Broise, F. Dal’bo and M. Peigné, Études spectrales d’opérateurs de transfert et applications. Astérisque 238 (1996) Société‰ Math. de France. Zbl0893.00017
  8. [8] P. Collet, Some ergodic properties of maps of the interval, in dynamical systems, edited by R. Bamon, J.M. Gambaudo and S. Martinez. Hermann, Paris (1996). Zbl0876.58024MR1600931
  9. [9] C. Coulon–Prieur and P. Doukhan, A triangular central limit Theorem under a new weak dependence condition. Statist. Probab. Lett. 47 (2000) 61-68. Zbl0956.60006
  10. [10] W. De Melo and S. Van Strien, One-Dimensional Dynamics. Springer-Verlag (1993). Zbl0791.58003MR1239171
  11. [11] P. Doukhan, Mixing: Properties and Examples. Springer Verlag, Lecture Notes in Statist. 85 (1994). Zbl0801.60027MR1312160
  12. [12] P. Doukhan, Models, Inequalities and Limit Theorems for Stationary Sequences, edited by P. Doukhan, G. Oppenheim and M. Taqqu. Birkhaüser (to appear). Zbl1032.62081MR1956044
  13. [13] P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. Zbl0996.60020MR1719345
  14. [14] P. Doukhan and S. Louhichi, Functional estimation of a density under a new weak dependence condition. Scand. J. Statist. 28 (2001) 325-342. Zbl0973.62030MR1842253
  15. [15] A. Lasota and M. Mackey, Probabilistic properties of deterministic systems. Cambridge University Press (1985). Zbl0606.58002MR832868
  16. [16] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973) 481-488. Zbl0298.28015MR335758
  17. [17] C. Liverani, Decay of correlations for piecewise expanding maps. J. Statist. Phys. 78 (1995) 1111-1129. Zbl1080.37501MR1315241
  18. [18] C. Liverani, Central limit Theorem for deterministic systems, in Proc. of the international Congress on Dynamical Systems, Montevideo 95. Pittman, Res. Notes Math. (1997). Zbl0871.58055MR1460797
  19. [19] J. Maës, Statistique non paramétrique des processus dynamiques réels en temps discret. Thèse de l’Université Paris 6 (1999). 
  20. [20] D. Pollard, Convergence of Stochastic Processes. Springer Verlag, Springer Ser. Statist. (1984). Zbl0544.60045MR762984
  21. [21] R. Prakasa, Nonparametric functional estimation. Academic Press, New York (1983). Zbl0542.62025MR740865
  22. [22] E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35-61. www.emath.fr/ps Zbl0869.60021MR1382517
  23. [23] E. Rio, Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes. Probab. Theory Related Fields 104 (1996) 255-282. Zbl0838.60017
  24. [24] P.M. Robinson, Non parametric estimators for time series. J. Time Ser. Anal. 4-3 (1983) 185-207. Zbl0544.62082MR732897
  25. [25] M. Rosenblatt, Stochastic curve estimation, in NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 3 (1991). 
  26. [26] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics, Second Edition (1974). Zbl0278.26001MR344043
  27. [27] M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica Pura e Aplicada. IMPA, Vol. 21 (1997). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.