Density estimation for one-dimensional dynamical systems
ESAIM: Probability and Statistics (2001)
- Volume: 5, page 51-76
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topPrieur, Clémentine. "Density estimation for one-dimensional dynamical systems." ESAIM: Probability and Statistics 5 (2001): 51-76. <http://eudml.org/doc/104279>.
@article{Prieur2001,
abstract = {In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.},
author = {Prieur, Clémentine},
journal = {ESAIM: Probability and Statistics},
keywords = {dynamical systems; decay of correlations; invariant probability; stationary sequences; Lindeberg theorem; central limit theorem; bias; nonparametric estimation; $s$-weakly and $a$-weakly dependent},
language = {eng},
pages = {51-76},
publisher = {EDP-Sciences},
title = {Density estimation for one-dimensional dynamical systems},
url = {http://eudml.org/doc/104279},
volume = {5},
year = {2001},
}
TY - JOUR
AU - Prieur, Clémentine
TI - Density estimation for one-dimensional dynamical systems
JO - ESAIM: Probability and Statistics
PY - 2001
PB - EDP-Sciences
VL - 5
SP - 51
EP - 76
AB - In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.
LA - eng
KW - dynamical systems; decay of correlations; invariant probability; stationary sequences; Lindeberg theorem; central limit theorem; bias; nonparametric estimation; $s$-weakly and $a$-weakly dependent
UR - http://eudml.org/doc/104279
ER -
References
top- [1] A. Amroun, Systèmes dynamiques perturbés. Sur une classe de fonctions zéta dynamiques, Thèse de Doctorat de l’Université Paris 6, Spécialité Mathématique (1995).
- [2] P. Ango Nze and P. Doukhan, Non-parametric Minimax estimation in a weakly dependent framework I: Quadratic properties. Math. Methods Statist. 5-4 (1996) 404-423. Zbl0893.62024MR1443126
- [3] V. Baladi, M. Benedicks and V. Maume–Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps. Ann. E.N.S. (to appear). Zbl1037.37003
- [4] A.D. Barbour, R.M. Gerrard and G. Reinert, Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151-180. Zbl0976.37019MR1743768
- [5] D. Bosq and D. Guégan, Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system. Statist. Probab. Lett. 25 (1995) 201-212. Zbl0841.62028MR1369514
- [6] D. Bosq and J.P. Lecoutre, Théorie de l’estimation fonctionnelle. Collection “Économie et statistiques avancées”. Série : École Nationale de la Statistique et de l’Administration Économique et Centre d’Études des Programmes Economiques. Economica (1987).
- [7] A. Broise, F. Dal’bo and M. Peigné, Études spectrales d’opérateurs de transfert et applications. Astérisque 238 (1996) Société Math. de France. Zbl0893.00017
- [8] P. Collet, Some ergodic properties of maps of the interval, in dynamical systems, edited by R. Bamon, J.M. Gambaudo and S. Martinez. Hermann, Paris (1996). Zbl0876.58024MR1600931
- [9] C. Coulon–Prieur and P. Doukhan, A triangular central limit Theorem under a new weak dependence condition. Statist. Probab. Lett. 47 (2000) 61-68. Zbl0956.60006
- [10] W. De Melo and S. Van Strien, One-Dimensional Dynamics. Springer-Verlag (1993). Zbl0791.58003MR1239171
- [11] P. Doukhan, Mixing: Properties and Examples. Springer Verlag, Lecture Notes in Statist. 85 (1994). Zbl0801.60027MR1312160
- [12] P. Doukhan, Models, Inequalities and Limit Theorems for Stationary Sequences, edited by P. Doukhan, G. Oppenheim and M. Taqqu. Birkhaüser (to appear). Zbl1032.62081MR1956044
- [13] P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313-342. Zbl0996.60020MR1719345
- [14] P. Doukhan and S. Louhichi, Functional estimation of a density under a new weak dependence condition. Scand. J. Statist. 28 (2001) 325-342. Zbl0973.62030MR1842253
- [15] A. Lasota and M. Mackey, Probabilistic properties of deterministic systems. Cambridge University Press (1985). Zbl0606.58002MR832868
- [16] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973) 481-488. Zbl0298.28015MR335758
- [17] C. Liverani, Decay of correlations for piecewise expanding maps. J. Statist. Phys. 78 (1995) 1111-1129. Zbl1080.37501MR1315241
- [18] C. Liverani, Central limit Theorem for deterministic systems, in Proc. of the international Congress on Dynamical Systems, Montevideo 95. Pittman, Res. Notes Math. (1997). Zbl0871.58055MR1460797
- [19] J. Maës, Statistique non paramétrique des processus dynamiques réels en temps discret. Thèse de l’Université Paris 6 (1999).
- [20] D. Pollard, Convergence of Stochastic Processes. Springer Verlag, Springer Ser. Statist. (1984). Zbl0544.60045MR762984
- [21] R. Prakasa, Nonparametric functional estimation. Academic Press, New York (1983). Zbl0542.62025MR740865
- [22] E. Rio, About the Lindeberg method for strongly mixing sequences. ESAIM: PS 1 (1995) 35-61. www.emath.fr/ps Zbl0869.60021MR1382517
- [23] E. Rio, Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes. Probab. Theory Related Fields 104 (1996) 255-282. Zbl0838.60017
- [24] P.M. Robinson, Non parametric estimators for time series. J. Time Ser. Anal. 4-3 (1983) 185-207. Zbl0544.62082MR732897
- [25] M. Rosenblatt, Stochastic curve estimation, in NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 3 (1991).
- [26] W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics, Second Edition (1974). Zbl0278.26001MR344043
- [27] M. Viana, Stochastic dynamics of deterministic systems, Instituto de Matematica Pura e Aplicada. IMPA, Vol. 21 (1997).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.