On the functional central limit theorem for stationary processes
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 1, page 1-34
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDedecker, Jérôme, and Rio, Emmanuel. "On the functional central limit theorem for stationary processes." Annales de l'I.H.P. Probabilités et statistiques 36.1 (2000): 1-34. <http://eudml.org/doc/77647>.
@article{Dedecker2000,
author = {Dedecker, Jérôme, Rio, Emmanuel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {strictly stationary process; invariance principle; strong mixing; Markov chains},
language = {eng},
number = {1},
pages = {1-34},
publisher = {Gauthier-Villars},
title = {On the functional central limit theorem for stationary processes},
url = {http://eudml.org/doc/77647},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Dedecker, Jérôme
AU - Rio, Emmanuel
TI - On the functional central limit theorem for stationary processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 1
SP - 1
EP - 34
LA - eng
KW - strictly stationary process; invariance principle; strong mixing; Markov chains
UR - http://eudml.org/doc/77647
ER -
References
top- [1] A. De Acosta, Moderate deviations for empirical measures of Markov chains: lower bounds, Ann. Probab.25 (1997) 259-284. Zbl0877.60019MR1428509
- [2] P. Ango-Nzé, Critères d'ergodicité de modèles markoviens. Estimation non paramétrique des hypothèses de dépendance, Thèse de doctorat d'université, Université Paris 9, Dauphine, 1994.
- [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR233396
- [4] R.C. Bradley, On quantiles and the central limit question for strongly mixing sequences, J. Theor. Probab.10 (1997) 507-555. Zbl0887.60028MR1455156
- [5] X. Chen, Limit theorems for functionals of ergodic Markov chains with general state space, Mem. Amer. Math. Soc.139 (1999) 664. Zbl0952.60014MR1491814
- [6] J. Dedecker, A central limit theorem for stationary random fields, Probab. Theory Relat. Fields110 (1998) 397-426. Zbl0902.60020MR1616496
- [7] B. Delyon, Limit theorem for mixing processes, Tech. Report IRISA, Rennes 1, 546, 1990.
- [8] P. Doukhan, P. Massart and E. Rio, The functional central limit theorem for strongly mixing processes, Annales Inst. H. PoincaréProbab. Statist.30 (1994) 63-82. Zbl0790.60037MR1262892
- [9] M. Duflo, Algorithmes Stochastiques, Mathématiques et Applications, Springer, Berlin, 1996. Zbl0882.60001MR1612815
- [10] A.M. Garsia, A simple proof of E. Hopf's maximal ergodic theorem, J. Math. and Mech.14 (1965) 381-382. Zbl0178.38601MR209440
- [11] M.I. Gordin, The central limit theorem for stationary processes, Soviet Math. Dokl.10 (1969) 1174-1176. Zbl0212.50005MR251785
- [12] M.I. Gordin, Abstracts of Communication, T.1:A-K, International Conference on Probability Theory, Vilnius, 1973.
- [13] M.I. Gordin and B.A. LIFŠIC, The central limit theorem for stationary Markov processes, Soviet Math. Dokl.19 (1978) 392-394. Zbl0395.60057MR501277
- [14] C.C. Heyde, On the central limit theorem and iterated logarithm law for stationary processes, Bull. Austral. Math. Soc.12 (1975) 1-8. Zbl0287.60035MR372954
- [15] I.A. Ibragimov, A central limit theorem for a class of dependent random variables, Theory Probab. Appl.8 (1963) 83-89. Zbl0123.36103MR151997
- [16] N. Maigret, Théorème de limite centrale pour une chaîne de Markov récurrente Harris positive, Annales Inst. H. PoincaréProbab. Statist.14 (1978) 425-440. Zbl0414.60040MR523221
- [17] S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer, Berlin, 1993. Zbl0925.60001MR1287609
- [18] E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, London, 1984. Zbl0551.60066MR776608
- [19] V.V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Oxford University Press, Oxford, 1995. Zbl0826.60001MR1353441
- [20] E. Rio, Covariance inequalities for strongly mixing processes, Annales Inst. H. Poincaré Probab. Statist.29 (1993) 587-597. Zbl0798.60027MR1251142
- [21] E. Rio, A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws, Ann. Probab.23 (1995) 918-937. Zbl0836.60026MR1334177
- [22] M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. USA42 (1956) 43-47. Zbl0070.13804MR74711
- [23] Y.A. Rozanov and V.A. Volkonskii, Some limit theorem for random functions I, Theory Probab. Appl.4 (1959) 178-197. Zbl0092.33502MR121856
- [24] P. Tuominen and R.L. Tweedie, Subgeometric rates of convergence of f -ergodic Markov chains, Adv. Appl. Probab.26 (1994) 775-798. Zbl0803.60061MR1285459
- [25] G. Viennet, Inequalities for absolutely regular sequences: application to density estimation, Probab. Theor. Related Fields107 (1997) 467-492. Zbl0933.62029MR1440142
- [26] D. Volný, Approximating martingales and the central limit theorem for strictly stationary processes, Stoch. Processes Appl.44 (1993) 41-74. Zbl0765.60025MR1198662
Citations in EuDML Documents
top- Christophe Cuny, Michael Lin, Pointwise ergodic theorems with rate and application to the CLT for Markov chains
- Jérôme Dedecker, Exponential inequalities and functional central limit theorems for random fields
- Olivier Durieu, Dalibor Volný, Comparison between criteria leading to the weak invariance principle
- Jérôme Dedecker, Florence Merlevède, The empirical distribution function for dependent variables: asymptotic and nonasymptotic results in
- Jérôme Dedecker, Exponential inequalities and functional central limit theorems for random fields
- Jérôme Dedecker, Emmanuel Rio, On mean central limit theorems for stationary sequences
- Michael H. Neumann, A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics
- Jérôme Dedecker, Adeline Samson, Marie-Luce Taupin, Estimation in autoregressive model with measurement error
- Jérôme Dedecker, Florence Merlevède, Magda Peligrad, A quenched weak invariance principle
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.