Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains
Jean-Pierre Conze; Albert Raugi
ESAIM: Probability and Statistics (2010)
- Volume: 7, page 115-146
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topConze, Jean-Pierre, and Raugi, Albert. "Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains." ESAIM: Probability and Statistics 7 (2010): 115-146. <http://eudml.org/doc/104299>.
@article{Conze2010,
abstract = { We present a spectral theory for a class of
operators satisfying a weak
“Doeblin–Fortet" condition and apply it to a class of transition operators.
This gives the convergence of the series ∑k≥0krPkƒ,
$r \in \mathbb\{N\}$,
under some regularity assumptions and implies the central limit theorem
with a rate in $n^\{- \frac\{1\}\{2\} \}$ for the corresponding Markov chain.
An application to a non uniformly hyperbolic transformation on the
interval is also given.
},
author = {Conze, Jean-Pierre, Raugi, Albert},
journal = {ESAIM: Probability and Statistics},
keywords = {Transfer operator; convergence of iterates; Markov chains;
rate in the TCL
for dynamical systems; Borel-Cantelli property; non uniformly hyperbolic map.; transfer operator; rate in the TCL for dynamical systems; non uniformly hyperbolic map},
language = {eng},
month = {3},
pages = {115-146},
publisher = {EDP Sciences},
title = {Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains},
url = {http://eudml.org/doc/104299},
volume = {7},
year = {2010},
}
TY - JOUR
AU - Conze, Jean-Pierre
AU - Raugi, Albert
TI - Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 7
SP - 115
EP - 146
AB - We present a spectral theory for a class of
operators satisfying a weak
“Doeblin–Fortet" condition and apply it to a class of transition operators.
This gives the convergence of the series ∑k≥0krPkƒ,
$r \in \mathbb{N}$,
under some regularity assumptions and implies the central limit theorem
with a rate in $n^{- \frac{1}{2} }$ for the corresponding Markov chain.
An application to a non uniformly hyperbolic transformation on the
interval is also given.
LA - eng
KW - Transfer operator; convergence of iterates; Markov chains;
rate in the TCL
for dynamical systems; Borel-Cantelli property; non uniformly hyperbolic map.; transfer operator; rate in the TCL for dynamical systems; non uniformly hyperbolic map
UR - http://eudml.org/doc/104299
ER -
References
top- V. Baladi, Positive Transfer Operators and Decay of Correlations. World Scientific, Adv. Ser. Nonlinear Dynam. 16 (2000).
- R. Bowen, Equilibrium states and the ergodic theory of Anosov Diffeomorphisms. Springer-Verlag, Lectures Notes 470 (1975).
- B.M. Brown, Martingale central limit theorem. Ann. Math. Statist.42 (1971) 59-66.
- N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures. Isreal J. Math.122 (2001) 1-27.
- J.-P. Conze and A. Raugi, Fonctions harmoniques pour un opérateur de transition et applications. Bull. Soc. Math. France118 (1990) 273-310.
- J.-P. Conze and A. Raugi, Convergence des potentiels pour un opérateur de transfert, applications aux systèmes dynamiques et aux chaînes de Markov. Séminaires de Rennes (1998) 52.
- M.I. Gordin, On the central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR, Soviet Math. Dokl. 10 (1969) 1174-1176.
- M.I. Gordin and B.A. Lifvsic, Central limit theorem for stationary Markov processes. Dokl. Akad. Nauk SSSR239 (1978) 766-767.
- S. Gouëzel, Sharp polynomial estimates for the decay of correlations. Preprint (2002).
- P. Hall and C.C. Heyde, Martingale limit theory and its applications. Academic Press, New York (1980).
- H. Hennion and L. Hervé, Limit theorem for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness. Springer-Verlag, Lectures Notes 1766 (2001).
- H. Hu, Decay of correlations for piecwise smooth maps with indifferent fixed points. Preprint.
- C. Jan, Vitesse de convergence dans le TCL pour certaines chaînes de Markov et certains systèmes dynamiques, Preprint. Université de Rennes 1 (2000).
- D.Y. Kleinbock and G.A. Margulis, Logarithm laws for flows on homogeneous spaces. Invent. Math.138 (1999) 451-494.
- A. Kondah, V. Maume and B. Schmitt, Vitesse de convergence vers l'état d'équilibre pour des dynamiques markoviennes non höldériennes. Ann. Inst. H. Poincaré33 (1997) 675-695.
- C. Liverani, Decay of correlations. Ann. Math.142 (1995) 239-301.
- C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems19 (1999) 671-685.
- W. Philipp, Some metrical theorems in number theory. Pacific J. Math.20 (1967) 109-127.
- M. Pollicott, Rates of mixing for potentials of summable variation. Trans. Amer. Math. Soc.352 (2000) 843-853.
- M. Pollicott and M. Yuri, Statistical properties of maps with indifferent periodic points. Comm. Math. Phys.217 (2001) 503-520.
- A. Raugi, Théorie spectrale d'un opérateur de transition sur un espace métrique compact. Ann. Inst. H. Poincaré28 (1992) 281-309.
- E. Rio, Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. J. Probab. Theory Related Fields104 (1996) 255-282.
- O. Sarig, Subexponential decay of decorrelation. Preprint (2001).
- Ya.G. Sinai, Gibbs measures in ergodic theory. Russian Math. Surveys166 (1972) 21-64.
- P. Walters, Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc.236 (1978) 121-153.
- L.-S. Young, Recurrence times and rates of mixing. Israel J. Math.110 (1999) 153-188.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.