On the asymptotic properties of a simple estimate of the Mode
Christophe Abraham; Gérard Biau; Benoît Cadre
ESAIM: Probability and Statistics (2010)
- Volume: 8, page 1-11
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topAbraham, Christophe, Biau, Gérard, and Cadre, Benoît. "On the asymptotic properties of a simple estimate of the Mode." ESAIM: Probability and Statistics 8 (2010): 1-11. <http://eudml.org/doc/104318>.
@article{Abraham2010,
abstract = {
We consider an estimate of the mode θ of a multivariate probability density f with support in $\mathbb R^d$ using a kernel estimate fn drawn from a sample X1,...,Xn. The estimate θn is defined as any x in \{X1,...,Xn\} such that $f_n(x)=\max_\{i=1, \hdots,n\} f_n(X_i)$. It is shown that θn behaves asymptotically as any maximizer $\{\hat\{\theta\}\}_n$ of fn. More precisely, we prove that for any sequence $(r_n)_\{n\geq 1\}$ of positive real numbers such that $r_n\to\infty$ and $r_n^d\log n/n\to 0$, one has $r_n\,\|\theta_n-\{\hat\{\theta\}\}_n\| \to 0$ in probability. The asymptotic normality of θn follows without further work.
},
author = {Abraham, Christophe, Biau, Gérard, Cadre, Benoît},
journal = {ESAIM: Probability and Statistics},
keywords = {Multivariate probability density; mode; kernel estimate; central limit theorem.; multivariate probability density; central limit theorem},
language = {eng},
month = {3},
pages = {1-11},
publisher = {EDP Sciences},
title = {On the asymptotic properties of a simple estimate of the Mode},
url = {http://eudml.org/doc/104318},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Abraham, Christophe
AU - Biau, Gérard
AU - Cadre, Benoît
TI - On the asymptotic properties of a simple estimate of the Mode
JO - ESAIM: Probability and Statistics
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 1
EP - 11
AB -
We consider an estimate of the mode θ of a multivariate probability density f with support in $\mathbb R^d$ using a kernel estimate fn drawn from a sample X1,...,Xn. The estimate θn is defined as any x in {X1,...,Xn} such that $f_n(x)=\max_{i=1, \hdots,n} f_n(X_i)$. It is shown that θn behaves asymptotically as any maximizer ${\hat{\theta}}_n$ of fn. More precisely, we prove that for any sequence $(r_n)_{n\geq 1}$ of positive real numbers such that $r_n\to\infty$ and $r_n^d\log n/n\to 0$, one has $r_n\,\|\theta_n-{\hat{\theta}}_n\| \to 0$ in probability. The asymptotic normality of θn follows without further work.
LA - eng
KW - Multivariate probability density; mode; kernel estimate; central limit theorem.; multivariate probability density; central limit theorem
UR - http://eudml.org/doc/104318
ER -
References
top- C. Abraham, G. Biau and B. Cadre, Simple estimation of the mode of a multivariate density. Canadian J. Statist.31 (2003) 23-34.
- L. Devroye, Recursive estimation of the mode of a multivariate density. Canadian J. Statist.7 (1979) 159-167.
- L. Devroye, A Course in Density Estimation. Birkhäuser, Boston (1987).
- W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist.8 (1980) 870-882.
- V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl.18 (1973) 836-842.
- J. Leclerc and D. Pierre-Loti-Viaud, Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris331 (2000) 637-640.
- A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator, ESAIM: Probab. Statist.7 (2003) 1-21.
- E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist.33 (1962) 1065-1076.
- D. Pollard, Convergence of Stochastic Processes. Springer–Verlag, New York (1984).
- J.P. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist.16 (1988) 629-647.
- M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist.27 (1956) 832-837.
- T.W. Sager, Estimating modes and isopleths. Comm. Statist. – Theory Methods12 (1983) 529-557.
- M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J.7 (1973) 109-117.
- B. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist.6 (1978) 177-184.
- P. Vieu, A note on density mode estimation. Statist. Probab. Lett.26 (1996) 297-307.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.