The law of the iterated logarithm for the multivariate kernel mode estimator
Abdelkader Mokkadem; Mariane Pelletier
ESAIM: Probability and Statistics (2003)
- Volume: 7, page 1-21
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topMokkadem, Abdelkader, and Pelletier, Mariane. "The law of the iterated logarithm for the multivariate kernel mode estimator." ESAIM: Probability and Statistics 7 (2003): 1-21. <http://eudml.org/doc/244798>.
@article{Mokkadem2003,
abstract = {Let $\theta $ be the mode of a probability density and $\theta _n$ its kernel estimator. In the case $\theta $ is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for $\theta _n-\theta $. Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence $\theta _n-\theta $ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the $l^p$ norms, $p\in [1,\infty ]$, of $\theta _n-\theta $. Finally, we consider the case $\theta $ is degenerate and give the exact weak and strong convergence rate of $\theta _n-\theta $ in the univariate framework.},
author = {Mokkadem, Abdelkader, Pelletier, Mariane},
journal = {ESAIM: Probability and Statistics},
keywords = {density; mode; kernel estimator; central limit theorem; law of the iterated logarithm},
language = {eng},
pages = {1-21},
publisher = {EDP-Sciences},
title = {The law of the iterated logarithm for the multivariate kernel mode estimator},
url = {http://eudml.org/doc/244798},
volume = {7},
year = {2003},
}
TY - JOUR
AU - Mokkadem, Abdelkader
AU - Pelletier, Mariane
TI - The law of the iterated logarithm for the multivariate kernel mode estimator
JO - ESAIM: Probability and Statistics
PY - 2003
PB - EDP-Sciences
VL - 7
SP - 1
EP - 21
AB - Let $\theta $ be the mode of a probability density and $\theta _n$ its kernel estimator. In the case $\theta $ is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for $\theta _n-\theta $. Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence $\theta _n-\theta $ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the $l^p$ norms, $p\in [1,\infty ]$, of $\theta _n-\theta $. Finally, we consider the case $\theta $ is degenerate and give the exact weak and strong convergence rate of $\theta _n-\theta $ in the univariate framework.
LA - eng
KW - density; mode; kernel estimator; central limit theorem; law of the iterated logarithm
UR - http://eudml.org/doc/244798
ER -
References
top- [1] M.A. Arcones, The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab. 2 (1997) 1-39. Zbl0888.60010MR1475863
- [2] A. Berlinet, A. Gannoun and E. Matzner–Loeber, Normalité asymptotique d’estimateurs convergents du mode conditionnel. Can. J. Statist. 26 (1998) 365-380. Zbl0926.62036
- [3] H. Chernoff, Estimation of the mode. Ann. Inst. Stat. Math. 16 (1964) 31-41. Zbl0212.21802MR172382
- [4] G. Collomb, W. Härdle and S. Hassani, A note on prediction via estimation of the conditional mode function. J. Statist. Planning Inference 15 (1987) 227-236. Zbl0614.62045MR873010
- [5] W.F. Eddy, Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. Zbl0438.62027MR572631
- [6] W.F. Eddy, The asymptotic distributions of kernel estimators of the mode. Z. Warsch. Verw. Geb. 59 (1982) 279-290. Zbl0464.62018MR721626
- [7] U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type functions estimators. J. Theoret. Probab. 13 (2000) 1-37. Zbl0995.62042MR1744994
- [8] E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators, Preprint. Paris VI (2000). Zbl1011.62034MR1955344
- [9] U. Grenander, Some direct estimates of the mode. Ann. Math. Statist. 36 (1965) 131-138. Zbl0131.17702MR170409
- [10] B. Grund and P. Hall, On the minimisation of error in mode estimation. Ann. Statist. 23 (1995) 2264-2284. Zbl0853.62029MR1389874
- [11] P. Hall, Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Geb. 56 (1981) 47-61. Zbl0443.62027MR612159
- [12] P. Hall, Asymptotic theory of Grenander’s mode estimator. Z. Warsch. Verw. Geb. 60 (1982) 315-334. Zbl0472.60022
- [13] V.D. Konakov, On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842. Zbl0325.62033MR336874
- [14] J. Leclerc and D. Pierre–Loti–Viaud, Vitesse de convergence presque sûre de l’estimateur à noyau du mode. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 637-640. Zbl0961.62043
- [15] D. Louani and E. Ould–Said, Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. J. Nonparametr. Statist. 11 (1999) 413-442. Zbl0955.62038
- [16] A. Mokkadem and M. Pelletier, A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted). Zbl1013.62032
- [17] E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186-190. Zbl0134.36302MR172400
- [18] E. Ould–Said, A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat. 24 (1997) 231-239. Zbl0879.60026
- [19] E. Parzen, On estimating probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. Zbl0116.11302MR143282
- [20] D. Pollard, Convergence of Stochastic Processes. Springer, New York (1984). Zbl0544.60045MR762984
- [21] A. Quintela–Del–Rio and P. Vieu, A nonparametric conditional mode estimate. J. Nonparametr. Statist. 8 (1997) 253-266. Zbl0887.62039
- [22] J. Romano, On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. Zbl0658.62053MR947566
- [23] L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode. Sankhya Ser. A 39 (1977) 243-250. Zbl0409.62041MR494666
- [24] T.W. Sager, Consistency in nonparametric estimation of the mode. Ann. Statist. 3 (1975) 698-706. Zbl0303.62037MR373142
- [25] M. Samanta, Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. Zbl0268.62015MR331618
- [26] M. Samanta and A. Thavaneswaran, Nonparametric estimation of the conditional mode. Commun Stat., Theory Methods 19 (1990) 4515-4524. Zbl0732.62037MR1114855
- [27] A.B. Tsybakov, Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission 26 (1990) 31-37. Zbl0722.62026MR1051586
- [28] J. Van Ryzin, On strong consistency of density estimates. Ann. Math. Statist. 40 (1969) 1765-1772. Zbl0198.23502MR258172
- [29] J.H. Venter, On estimation of the mode. Ann. Math. Statist. 38 (1967) 1446-1455. Zbl0245.62033MR216698
- [30] P. Vieu, A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. Zbl0847.62024MR1393913
- [31] H. Yamato, Sequential estimation of a continuous probability density function and the mode. Bull. Math. Statist. 14 (1971) 1-12. Zbl0259.62034MR381187
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.