Tail and moment estimates for sums of independent random vectors with logarithmically concave tails
Studia Mathematica (1996)
- Volume: 118, Issue: 3, page 301-304
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. J. Dilworth and S. J. Montgomery-Smith, The distribution of vector-valued Rademacher series, Ann. Probab. 21 (1993), 2046-2052. Zbl0798.46006
- [2] E. D. Gluskin and S. Kwapień, Tail and moment estimates for sums of independent random variables with logarithmically concave tails, Studia Math. 114 (1995), 303-309. Zbl0834.60050
- [3] P. Hitczenko and S. Kwapień, On the Rademacher series, in: Probability in Banach Spaces 9, Birkhäuser, Boston, 31-36. Zbl0822.60013
- [4] B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991), 188-197. Zbl0756.60018
- [5] M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, in: Israel Seminar (GAFA), Lecture Notes in Math. 1469, Springer, 1991, 94-124. Zbl0818.46047
Citations in EuDML Documents
top- Miguel A. Arcones, The large deviation principle for certain series
- Miguel A. Arcones, The large deviation principle for certain series
- Rafał Latała, Tail and moment estimates for some types of chaos
- Radosław Adamczak, Rafał Latała, Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails