Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes
Bernard Roynette; Pierre Vallois; Agnès Volpi
ESAIM: Probability and Statistics (2007)
- Volume: 12, page 58-93
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topRoynette, Bernard, Vallois, Pierre, and Volpi, Agnès. "Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes." ESAIM: Probability and Statistics 12 (2007): 58-93. <http://eudml.org/doc/104411>.
@article{Roynette2007,
abstract = {Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy
measure ν. We consider the first passage time Tx of
(Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the
overshoot and Lx := x- XTx- the undershoot. We first prove
that the Laplace transform of the random triple (Tx,Kx,Lx)
satisfies some kind of integral equation. Second, assuming that
ν admits exponential moments, we show that
$(\widetilde\{T_x\},K_x,L_x)$ converges in distribution as
x → ∞, where $\widetilde\{T_x\}$ denotes a suitable
renormalization of Tx.
},
author = {Roynette, Bernard, Vallois, Pierre, Volpi, Agnès},
journal = {ESAIM: Probability and Statistics},
keywords = {Lévy processes; ruin problem; hitting time; overshoot;
undershoot; asymptotic estimates; functional equation.; undershoot; functional equation},
language = {eng},
month = {11},
pages = {58-93},
publisher = {EDP Sciences},
title = {Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes},
url = {http://eudml.org/doc/104411},
volume = {12},
year = {2007},
}
TY - JOUR
AU - Roynette, Bernard
AU - Vallois, Pierre
AU - Volpi, Agnès
TI - Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes
JO - ESAIM: Probability and Statistics
DA - 2007/11//
PB - EDP Sciences
VL - 12
SP - 58
EP - 93
AB - Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy
measure ν. We consider the first passage time Tx of
(Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the
overshoot and Lx := x- XTx- the undershoot. We first prove
that the Laplace transform of the random triple (Tx,Kx,Lx)
satisfies some kind of integral equation. Second, assuming that
ν admits exponential moments, we show that
$(\widetilde{T_x},K_x,L_x)$ converges in distribution as
x → ∞, where $\widetilde{T_x}$ denotes a suitable
renormalization of Tx.
LA - eng
KW - Lévy processes; ruin problem; hitting time; overshoot;
undershoot; asymptotic estimates; functional equation.; undershoot; functional equation
UR - http://eudml.org/doc/104411
ER -
References
top- J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996).
- J. Bertoin and R.A. Doney, Cramér's estimate for Lévy processes. Statist. Probab. Lett.21 (1994) 363–365.
- H. Cramér, Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes. Skandia Insurance Company, Stockholm, (1955). Reprinted from the Jubilee Volume of Försäkringsaktiebolaget Skandia.
- H. Cramér, On the mathematical Theory of Risk. Skandia Jubilee Volume, Stockholm (1930).
- R.A. Doney, Hitting probabilities for spectrally positive Lévy processes. J. London Math. Soc.44 (1991) 566–576.
- R.A. Doney and A.E. Kyprianou, Overshoots and undershoots of Lévy processes. Ann. Appl. Probab.16 (2006) 91–106.
- R.A. Doney and R.A. Maller. Stability of the overshoot for Lévy processes. Ann. Probab.30 (2002) 188–212.
- F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion. Insurance Math. Econom.10 (1991) 51–59.
- I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1980). Corrected and enlarged edition edited by Alan Jeffrey, Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin], Translated from Russian.
- P.S. Griffin and R.A. Maller, On the rate of growth of the overshoot and the maximum partial sum. Adv. in Appl. Probab.30 (1998) 181–196.
- A. Gut, Stopped random walks, Applied Probability, vol. 5, A Series of the Applied Probability Trust. Springer-Verlag, New York, (1988). Limit theorems and applications.
- I. Karatzas and S.E. Shreve. Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113. Springer-Verlag, New York, second edition (1991).
- A.E. Kyprianou, Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin (2006).
- N.N. Lebedev, Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication.
- M. Loève, Probability theory. II. Springer-Verlag, New York, fourth edition (1978). Graduate Texts in Mathematics, Vol. 46.
- F. Lundberg, I- Approximerad Framställning av Sannolikhetsfunktionen. II- Aterförsäkering av Kollectivrisker. Almqvist and Wiksell, Uppsala (1903).
- T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999).
- K. Sato, Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (1999). Translated from the 1990 Japanese original, Revised by the author.
- A.G. Sveshnikov and A.N. Tikhonov, The theory of functions of a complex variable. “Mir”, Moscow (1982). Translated from the Russian by George Yankovsky [G. Yankovskiĭ].
- A. Volpi, Processus associés à l'équation de diffusion rapide; Étude asymptotique du temps de ruine et de l'overshoot. Univ. Henri Poincaré, Nancy I, Vandoeuvre les Nancy (2003). Thèse.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.