Gelfand transforms of -invariant Schwartz functions on the free group
Véronique Fischer; Fulvio Ricci[1]
- [1] Scuola Normale Superiore di Pisa, Piazza dei Cavalieri, 7 56126 Pisa (Italy)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2143-2168
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFischer, Véronique, and Ricci, Fulvio. "Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_{3,2}$." Annales de l’institut Fourier 59.6 (2009): 2143-2168. <http://eudml.org/doc/10450>.
@article{Fischer2009,
abstract = {The spectrum of a Gelfand pair $(K\ltimesN, K)$, where $N$ is a nilpotent group, can be embedded in a Euclidean space. We prove that in general, the Schwartz functions on the spectrum are the Gelfand transforms of Schwartz $K$-invariant functions on $N$. We also show the converse in the case of the Gelfand pair $(SO(3)\ltimesN_\{3,2\}, SO(3))$, where $N_\{3,2\}$ is the free two-step nilpotent Lie group with three generators. This extends recent results for the Heisenberg group.},
affiliation = {Scuola Normale Superiore di Pisa, Piazza dei Cavalieri, 7 56126 Pisa (Italy)},
author = {Fischer, Véronique, Ricci, Fulvio},
journal = {Annales de l’institut Fourier},
keywords = {Gelfand pair; Schwartz space; nilpotent Lie group},
language = {eng},
number = {6},
pages = {2143-2168},
publisher = {Association des Annales de l’institut Fourier},
title = {Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_\{3,2\}$},
url = {http://eudml.org/doc/10450},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Fischer, Véronique
AU - Ricci, Fulvio
TI - Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_{3,2}$
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2143
EP - 2168
AB - The spectrum of a Gelfand pair $(K\ltimesN, K)$, where $N$ is a nilpotent group, can be embedded in a Euclidean space. We prove that in general, the Schwartz functions on the spectrum are the Gelfand transforms of Schwartz $K$-invariant functions on $N$. We also show the converse in the case of the Gelfand pair $(SO(3)\ltimesN_{3,2}, SO(3))$, where $N_{3,2}$ is the free two-step nilpotent Lie group with three generators. This extends recent results for the Heisenberg group.
LA - eng
KW - Gelfand pair; Schwartz space; nilpotent Lie group
UR - http://eudml.org/doc/10450
ER -
References
top- F. Astengo, B. Di Blasio, F. Ricci, Gelfand transforms of polyradial Schwartz functions on the Heisenberg group, J. Funct. Anal. 251 (2007), 772-791 Zbl1128.43009MR2356428
- F. Astengo, B. Di Blasio, F. Ricci, Gelfand pairs on the Heisenberg group and Schwartz functions, (2008) Zbl1167.43008MR2490230
- C. Benson, J. Jenkins, G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), 85-116 Zbl0704.22006MR1000329
- C. Benson, J. Jenkins, G. Ratcliff, The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal. 154 (1998), 379-423 Zbl0914.22013MR1612717
- F. Ferrari R., The topology of the spectrum for Gelfand pairs on Lie groups, Bull. Un. Mat. It. 10 (2007), 569-579 Zbl1177.22004MR2351529
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207 Zbl0312.35026MR494315
- G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, 28 (1982), Princeton University Press, Princeton, N.J. Zbl0508.42025MR657581
- D. Geller, Fourier analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal. 36 (1980), 205-254 Zbl0433.43008MR569254
- D. Geller, Liouville’s theorem for homogeneous groups, Comm. Partial Differential Equations 8 (1983), 1665-1677 Zbl0538.35019MR729197
- R. Goodman, N. R. Wallach, Representations and invariants of the classical groups, 68 (1998), Cambridge University Press, Cambridge Zbl0948.22001MR1606831
- B. Helffer, J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958 Zbl0423.35040MR537467
- S. Helgason, Groups and geometric analysis, 113 (1984), Academic Press Inc., Orlando, FL Zbl0543.58001MR754767
- S. Helgason, The Radon transform, 5 (1999), Birkhäuser Boston Inc., Boston, MA Zbl0932.43011MR1723736
- A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266 Zbl0595.43007MR782662
- J. N. Mather, Differentiable invariants, Topology 16 (1977), 145-155 Zbl0376.58002MR436204
- G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68 Zbl0297.57015MR370643
- E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43 (1993), Princeton University Press, Princeton, NJ Zbl0821.42001MR1232192
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.