Analysis of joint spectral multipliers on Lie groups of polynomial growth
- [1] Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa (Italy)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 4, page 1215-1263
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMartini, Alessio. "Analysis of joint spectral multipliers on Lie groups of polynomial growth." Annales de l’institut Fourier 62.4 (2012): 1215-1263. <http://eudml.org/doc/251125>.
@article{Martini2012,
abstract = {We study the problem of $L^p$-boundedness ($1 < p < \infty $) of operators of the form $m(L_1,\dots ,L_n)$ for a commuting system of self-adjoint left-invariant differential operators $L_1,\dots ,L_n$ on a Lie group $G$ of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when $G$ is a homogeneous group and $L_1,\dots ,L_n$ are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.},
affiliation = {Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa (Italy)},
author = {Martini, Alessio},
journal = {Annales de l’institut Fourier},
keywords = {spectral multipliers; joint functional calculus; differential operators; Lie groups; polynomial growth; singular integral operators},
language = {eng},
number = {4},
pages = {1215-1263},
publisher = {Association des Annales de l’institut Fourier},
title = {Analysis of joint spectral multipliers on Lie groups of polynomial growth},
url = {http://eudml.org/doc/251125},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Martini, Alessio
TI - Analysis of joint spectral multipliers on Lie groups of polynomial growth
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1215
EP - 1263
AB - We study the problem of $L^p$-boundedness ($1 < p < \infty $) of operators of the form $m(L_1,\dots ,L_n)$ for a commuting system of self-adjoint left-invariant differential operators $L_1,\dots ,L_n$ on a Lie group $G$ of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when $G$ is a homogeneous group and $L_1,\dots ,L_n$ are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.
LA - eng
KW - spectral multipliers; joint functional calculus; differential operators; Lie groups; polynomial growth; singular integral operators
UR - http://eudml.org/doc/251125
ER -
References
top- G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc. 120 (1994), 973-979 Zbl0794.43003MR1172944
- Jöran Bergh, Jörgen Löfström, Interpolation spaces. An introduction, (1976), Springer-Verlag, Berlin Zbl0344.46071MR482275
- Earl Berkson, Maciej Paluszyński, Guido Weiss, Transference couples and their applications to convolution operators and maximal operators, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) 175 (1996), 69-84, Dekker, New York Zbl0839.43014MR1358144
- Michael Christ, bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81 Zbl0739.42010MR1104196
- Michael Christ, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc. 331 (1992), 1-13 Zbl0765.43002MR1104197
- Ronald R. Coifman, Guido Weiss, Transference methods in analysis, (1976), American Mathematical Society, Providence, R.I. Zbl0377.43001MR481928
- Michael Cowling, Herz’s “principe de majoration” and the Kunze-Stein phenomenon, Harmonic analysis and number theory (Montreal, PQ, 1996) 21 (1997), 73-88, Amer. Math. Soc., Providence, RI Zbl0964.22008MR1472779
- Michael Cowling, Adam Sikora, A spectral multiplier theorem for a sublaplacian on , Math. Z. 238 (2001), 1-36 Zbl0996.42006MR1860734
- Xuan Thinh Duong, El Maati Ouhabaz, Adam Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), 443-485 Zbl1029.43006MR1943098
- A. F. M. ter Elst, Derek W. Robinson, Weighted subcoercive operators on Lie groups, J. Funct. Anal. 157 (1998), 88-163 Zbl0910.22005MR1637929
- Véronique Fischer, Fulvio Ricci, Gelfand transforms of -invariant Schwartz functions on the free group , Ann. Inst. Fourier (Grenoble) 59 (2009), 2143-2168 Zbl1187.43007MR2640916
- G. B. Folland, Elias M. Stein, Hardy spaces on homogeneous groups, 28 (1982), Princeton University Press, Princeton, N.J. Zbl0508.42025MR657581
- A. J. Fraser, Marcinkiewicz multipliers on the Heisenberg group, (1997) MR2696216
- A. J. Fraser, Convolution kernels of -fold Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc. 64 (2001), 353-376 Zbl0987.43002MR1878888
- A. J. Fraser, An -fold Marcinkiewicz multiplier theorem on the Heisenberg group, Bull. Austral. Math. Soc. 63 (2001), 35-58 Zbl0979.43004MR1812307
- Loukas Grafakos, Classical Fourier analysis, 249 (2008), Springer, New York Zbl1220.42001MR2445437
- Waldemar Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231-239 Zbl0841.43009MR1240169
- Waldemar Hebisch, Functional calculus for slowly decaying kernels, (1995)
- Waldemar Hebisch, Adam Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236 Zbl0723.22007MR1067309
- Waldemar Hebisch, Jacek Zienkiewicz, Multiplier theorem on generalized Heisenberg groups. II, Colloq. Math. 69 (1995), 29-36 Zbl0835.43009MR1341678
- B. Helffer, Conditions nécessaires d’hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations 44 (1982), 460-481 Zbl0458.35019MR661164
- B. Helffer, J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958 Zbl0423.35040MR537467
- Andrzej Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266 Zbl0595.43007MR782662
- Jean Ludwig, Dual topology of diamond groups, J. Reine Angew. Math. 467 (1995), 67-87 Zbl0833.22011MR1355922
- Alessio Martini, Algebras of differential operators on Lie groups and spectral multipliers, (2010), Pisa
- Alessio Martini, Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal. 260 (2011), 2767-2814 Zbl1226.22012MR2772351
- Giancarlo Mauceri, Zonal multipliers on the Heisenberg group, Pacific J. Math. 95 (1981), 143-159 Zbl0474.43009MR631666
- Giancarlo Mauceri, Stefano Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154 Zbl0763.43005MR1125759
- Guy Métivier, Hypoellipticité analytique sur des groupes nilpotents de rang , Duke Math. J. 47 (1980), 195-221 Zbl0433.35015MR563376
- D. Müller, Elias M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. (9) 73 (1994), 413-440 Zbl0838.43011MR1290494
- Detlef Müller, Fulvio Ricci, Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math. 119 (1995), 199-233 Zbl0857.43012MR1312498
- Detlef Müller, Fulvio Ricci, Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), 267-291 Zbl0863.43001MR1376298
- Detlef Müller, Andreas Seeger, Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel J. Math. 141 (2004), 315-340 Zbl1054.22007MR2063040
- Ole A. Nielsen, Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, 63 (1983), Queen’s University, Kingston, ON Zbl0591.22004MR773296
- Charles Rockland, Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1-52 Zbl0326.22007MR486314
- Walter Rudin, Real and complex analysis, (1974), McGraw-Hill Book Co., New York Zbl0278.26001MR344043
- Thomas Runst, Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, 3 (1996), Walter de Gruyter & Co., Berlin Zbl0873.35001MR1419319
- Hans-Jürgen Schmeisser, Recent developments in the theory of function spaces with dominating mixed smoothness, Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Prague, May 30-June 6, 2006 8 (2007), 145-204, Czech Academy of Sciences, Mathematical Institute, Praha Zbl1289.46056MR2657119
- Hans-Jürgen Schmeisser, Winfried Sickel, Spaces of functions of mixed smoothness and approximation from hyperbolic crosses, J. Approx. Theory 128 (2004), 115-150 Zbl1045.41009MR2068694
- Hans-Jürgen Schmeisser, Hans Triebel, Topics in Fourier analysis and function spaces, 42 (1987), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig Zbl0661.46025MR900143
- Winfried Sickel, Tino Ullrich, Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross, J. Approx. Theory 161 (2009), 748-786 Zbl1194.46056MR2563079
- Adam Sikora, On the norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups, Trans. Amer. Math. Soc. 351 (1999), 3743-3755 Zbl0936.42009MR1670160
- Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana Univ. Math. J. 58 (2009), 317-334 Zbl1159.42009MR2504414
- Elias M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43 (1993), Princeton University Press, Princeton, NJ Zbl0821.42001MR1232192
- Krzysztof Stempak, A weighted multiplier theorem for Rockland operators, Colloq. Math. 51 (1987), 335-344 Zbl0622.43002MR891303
- Hans Triebel, Interpolation theory, function spaces, differential operators, 18 (1978), North-Holland Publishing Co., Amsterdam Zbl0387.46032MR503903
- Hans Triebel, Spaces of Besov-Hardy-Sobolev type, (1978), BSB B. G. Teubner Verlagsgesellschaft, Leipzig Zbl0408.46024MR581907
- Hans Triebel, Theory of function spaces, 78 (1983), Birkhäuser Verlag, Basel Zbl0763.46025MR781540
- Hans Triebel, The structure of functions, 97 (2001), Birkhäuser Verlag, Basel Zbl0984.46021MR1851996
- N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 100 (1992), Cambridge University Press, Cambridge Zbl1179.22009MR1218884
- Alessandro Veneruso, Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc. 61 (2000), 53-68 Zbl0967.43004MR1819315
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.