Analysis of joint spectral multipliers on Lie groups of polynomial growth

Alessio Martini[1]

  • [1] Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa (Italy)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 4, page 1215-1263
  • ISSN: 0373-0956

Abstract

top
We study the problem of L p -boundedness ( 1 < p < ) of operators of the form m ( L 1 , , L n ) for a commuting system of self-adjoint left-invariant differential operators L 1 , , L n on a Lie group G of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when G is a homogeneous group and L 1 , , L n are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.

How to cite

top

Martini, Alessio. "Analysis of joint spectral multipliers on Lie groups of polynomial growth." Annales de l’institut Fourier 62.4 (2012): 1215-1263. <http://eudml.org/doc/251125>.

@article{Martini2012,
abstract = {We study the problem of $L^p$-boundedness ($1 &lt; p &lt; \infty $) of operators of the form $m(L_1,\dots ,L_n)$ for a commuting system of self-adjoint left-invariant differential operators $L_1,\dots ,L_n$ on a Lie group $G$ of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when $G$ is a homogeneous group and $L_1,\dots ,L_n$ are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.},
affiliation = {Scuola Normale Superiore Piazza dei Cavalieri, 7 56126 Pisa (Italy)},
author = {Martini, Alessio},
journal = {Annales de l’institut Fourier},
keywords = {spectral multipliers; joint functional calculus; differential operators; Lie groups; polynomial growth; singular integral operators},
language = {eng},
number = {4},
pages = {1215-1263},
publisher = {Association des Annales de l’institut Fourier},
title = {Analysis of joint spectral multipliers on Lie groups of polynomial growth},
url = {http://eudml.org/doc/251125},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Martini, Alessio
TI - Analysis of joint spectral multipliers on Lie groups of polynomial growth
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1215
EP - 1263
AB - We study the problem of $L^p$-boundedness ($1 &lt; p &lt; \infty $) of operators of the form $m(L_1,\dots ,L_n)$ for a commuting system of self-adjoint left-invariant differential operators $L_1,\dots ,L_n$ on a Lie group $G$ of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when $G$ is a homogeneous group and $L_1,\dots ,L_n$ are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.
LA - eng
KW - spectral multipliers; joint functional calculus; differential operators; Lie groups; polynomial growth; singular integral operators
UR - http://eudml.org/doc/251125
ER -

References

top
  1. G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc. 120 (1994), 973-979 Zbl0794.43003MR1172944
  2. Jöran Bergh, Jörgen Löfström, Interpolation spaces. An introduction, (1976), Springer-Verlag, Berlin Zbl0344.46071MR482275
  3. Earl Berkson, Maciej Paluszyński, Guido Weiss, Transference couples and their applications to convolution operators and maximal operators, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) 175 (1996), 69-84, Dekker, New York Zbl0839.43014MR1358144
  4. Michael Christ, L p bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81 Zbl0739.42010MR1104196
  5. Michael Christ, The strong maximal function on a nilpotent group, Trans. Amer. Math. Soc. 331 (1992), 1-13 Zbl0765.43002MR1104197
  6. Ronald R. Coifman, Guido Weiss, Transference methods in analysis, (1976), American Mathematical Society, Providence, R.I. Zbl0377.43001MR481928
  7. Michael Cowling, Herz’s “principe de majoration” and the Kunze-Stein phenomenon, Harmonic analysis and number theory (Montreal, PQ, 1996) 21 (1997), 73-88, Amer. Math. Soc., Providence, RI Zbl0964.22008MR1472779
  8. Michael Cowling, Adam Sikora, A spectral multiplier theorem for a sublaplacian on SU ( 2 ) , Math. Z. 238 (2001), 1-36 Zbl0996.42006MR1860734
  9. Xuan Thinh Duong, El Maati Ouhabaz, Adam Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), 443-485 Zbl1029.43006MR1943098
  10. A. F. M. ter Elst, Derek W. Robinson, Weighted subcoercive operators on Lie groups, J. Funct. Anal. 157 (1998), 88-163 Zbl0910.22005MR1637929
  11. Véronique Fischer, Fulvio Ricci, Gelfand transforms of SO ( 3 ) -invariant Schwartz functions on the free group N 3 , 2 , Ann. Inst. Fourier (Grenoble) 59 (2009), 2143-2168 Zbl1187.43007MR2640916
  12. G. B. Folland, Elias M. Stein, Hardy spaces on homogeneous groups, 28 (1982), Princeton University Press, Princeton, N.J. Zbl0508.42025MR657581
  13. A. J. Fraser, Marcinkiewicz multipliers on the Heisenberg group, (1997) MR2696216
  14. A. J. Fraser, Convolution kernels of ( n + 1 ) -fold Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc. 64 (2001), 353-376 Zbl0987.43002MR1878888
  15. A. J. Fraser, An ( n + 1 ) -fold Marcinkiewicz multiplier theorem on the Heisenberg group, Bull. Austral. Math. Soc. 63 (2001), 35-58 Zbl0979.43004MR1812307
  16. Loukas Grafakos, Classical Fourier analysis, 249 (2008), Springer, New York Zbl1220.42001MR2445437
  17. Waldemar Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231-239 Zbl0841.43009MR1240169
  18. Waldemar Hebisch, Functional calculus for slowly decaying kernels, (1995) 
  19. Waldemar Hebisch, Adam Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236 Zbl0723.22007MR1067309
  20. Waldemar Hebisch, Jacek Zienkiewicz, Multiplier theorem on generalized Heisenberg groups. II, Colloq. Math. 69 (1995), 29-36 Zbl0835.43009MR1341678
  21. B. Helffer, Conditions nécessaires d’hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations 44 (1982), 460-481 Zbl0458.35019MR661164
  22. B. Helffer, J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958 Zbl0423.35040MR537467
  23. Andrzej Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266 Zbl0595.43007MR782662
  24. Jean Ludwig, Dual topology of diamond groups, J. Reine Angew. Math. 467 (1995), 67-87 Zbl0833.22011MR1355922
  25. Alessio Martini, Algebras of differential operators on Lie groups and spectral multipliers, (2010), Pisa 
  26. Alessio Martini, Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal. 260 (2011), 2767-2814 Zbl1226.22012MR2772351
  27. Giancarlo Mauceri, Zonal multipliers on the Heisenberg group, Pacific J. Math. 95 (1981), 143-159 Zbl0474.43009MR631666
  28. Giancarlo Mauceri, Stefano Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154 Zbl0763.43005MR1125759
  29. Guy Métivier, Hypoellipticité analytique sur des groupes nilpotents de rang 2 , Duke Math. J. 47 (1980), 195-221 Zbl0433.35015MR563376
  30. D. Müller, Elias M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. (9) 73 (1994), 413-440 Zbl0838.43011MR1290494
  31. Detlef Müller, Fulvio Ricci, Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math. 119 (1995), 199-233 Zbl0857.43012MR1312498
  32. Detlef Müller, Fulvio Ricci, Elias M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), 267-291 Zbl0863.43001MR1376298
  33. Detlef Müller, Andreas Seeger, Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel J. Math. 141 (2004), 315-340 Zbl1054.22007MR2063040
  34. Ole A. Nielsen, Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, 63 (1983), Queen’s University, Kingston, ON Zbl0591.22004MR773296
  35. Charles Rockland, Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1-52 Zbl0326.22007MR486314
  36. Walter Rudin, Real and complex analysis, (1974), McGraw-Hill Book Co., New York Zbl0278.26001MR344043
  37. Thomas Runst, Winfried Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, 3 (1996), Walter de Gruyter & Co., Berlin Zbl0873.35001MR1419319
  38. Hans-Jürgen Schmeisser, Recent developments in the theory of function spaces with dominating mixed smoothness, Nonlinear Analysis, Function Spaces and Applications. Proceedings of the Spring School held in Prague, May 30-June 6, 2006 8 (2007), 145-204, Czech Academy of Sciences, Mathematical Institute, Praha Zbl1289.46056MR2657119
  39. Hans-Jürgen Schmeisser, Winfried Sickel, Spaces of functions of mixed smoothness and approximation from hyperbolic crosses, J. Approx. Theory 128 (2004), 115-150 Zbl1045.41009MR2068694
  40. Hans-Jürgen Schmeisser, Hans Triebel, Topics in Fourier analysis and function spaces, 42 (1987), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig Zbl0661.46025MR900143
  41. Winfried Sickel, Tino Ullrich, Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross, J. Approx. Theory 161 (2009), 748-786 Zbl1194.46056MR2563079
  42. Adam Sikora, On the L 2 L norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups, Trans. Amer. Math. Soc. 351 (1999), 3743-3755 Zbl0936.42009MR1670160
  43. Adam Sikora, Multivariable spectral multipliers and analysis of quasielliptic operators on fractals, Indiana Univ. Math. J. 58 (2009), 317-334 Zbl1159.42009MR2504414
  44. Elias M. Stein, Singular integrals and differentiability properties of functions, (1970), Princeton University Press, Princeton, N.J. Zbl0207.13501MR290095
  45. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, 43 (1993), Princeton University Press, Princeton, NJ Zbl0821.42001MR1232192
  46. Krzysztof Stempak, A weighted multiplier theorem for Rockland operators, Colloq. Math. 51 (1987), 335-344 Zbl0622.43002MR891303
  47. Hans Triebel, Interpolation theory, function spaces, differential operators, 18 (1978), North-Holland Publishing Co., Amsterdam Zbl0387.46032MR503903
  48. Hans Triebel, Spaces of Besov-Hardy-Sobolev type, (1978), BSB B. G. Teubner Verlagsgesellschaft, Leipzig Zbl0408.46024MR581907
  49. Hans Triebel, Theory of function spaces, 78 (1983), Birkhäuser Verlag, Basel Zbl0763.46025MR781540
  50. Hans Triebel, The structure of functions, 97 (2001), Birkhäuser Verlag, Basel Zbl0984.46021MR1851996
  51. N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, 100 (1992), Cambridge University Press, Cambridge Zbl1179.22009MR1218884
  52. Alessandro Veneruso, Marcinkiewicz multipliers on the Heisenberg group, Bull. Austral. Math. Soc. 61 (2000), 53-68 Zbl0967.43004MR1819315

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.