Circle packings and combinatorial moduli
- [1] Université de Provence LATP/CMI 39, rue Frédéric Joliot-Curie 13453 Marseille Cedex 13 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2175-2222
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHaÏssinsky, Peter. "Empilements de cercles et modules combinatoires." Annales de l’institut Fourier 59.6 (2009): 2175-2222. <http://eudml.org/doc/10452>.
@article{HaÏssinsky2009,
abstract = {Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.},
affiliation = {Université de Provence LATP/CMI 39, rue Frédéric Joliot-Curie 13453 Marseille Cedex 13 (France)},
author = {HaÏssinsky, Peter},
journal = {Annales de l’institut Fourier},
keywords = {Circle packings; quasiconformal; modulus of curves},
language = {fre},
number = {6},
pages = {2175-2222},
publisher = {Association des Annales de l’institut Fourier},
title = {Empilements de cercles et modules combinatoires},
url = {http://eudml.org/doc/10452},
volume = {59},
year = {2009},
}
TY - JOUR
AU - HaÏssinsky, Peter
TI - Empilements de cercles et modules combinatoires
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2175
EP - 2222
AB - Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.
LA - fre
KW - Circle packings; quasiconformal; modulus of curves
UR - http://eudml.org/doc/10452
ER -
References
top- Lars V. Ahlfors, Lectures on quasiconformal mappings, (1966), D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London Zbl0138.06002MR2241787
- Lars V. Ahlfors, Conformal invariants : topics in geometric function theory, (1973), McGraw-Hill Book Co., New York Zbl0272.30012MR357743
- B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987 1351 (1988), 52-68, Springer, Berlin Zbl0662.46037MR982072
- Mario Bonk, Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127-183 Zbl1037.53023MR1930885
- Mario Bonk, Bruce Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), 81-106 Zbl1044.37015MR1949785
- Mario Bonk, Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219-246 (electronic) Zbl1087.20033MR2116315
- James W. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (1991), 315-369, Oxford Univ. Press, New York Zbl0764.57002MR1130181
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234 Zbl0832.30012MR1301392
- James W. Cannon, William J. Floyd, Walter R. Parry, Squaring rectangles : the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus : groups, geometry and special functions (Brooklyn, NY, 1992) 169 (1994), 133-212, Amer. Math. Soc., Providence, RI Zbl0818.20043MR1292901
- James W. Cannon, William J. Floyd, Walter R. Parry, Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math. 24 (1999), 265-304 Zbl0939.20048MR1724092
- James W. Cannon, Eric L. Swenson, Recognizing constant curvature discrete groups in dimension , Trans. Amer. Math. Soc. 350 (1998), 809-849 Zbl0910.20024MR1458317
- Yves Colin de Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991), 655-669 Zbl0745.52010MR1106755
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73 Zbl0474.20018MR623534
- Juha Heinonen, Lectures on analysis on metric spaces, (2001), Springer-Verlag, New York Zbl0985.46008MR1800917
- Juha Heinonen, Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61 Zbl0915.30018MR1654771
- Stephen Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245 (2003), 255-292 Zbl1037.31009MR2013501
- Stephen Keith, Tomi Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278-1321 Zbl1108.28008MR2135168
- Paul Koebe, Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys 88 (1936), 141-164 Zbl62.1217.04
- Jun-iti Nagata, Modern dimension theory, (1965), Interscience Publishers John Wiley & Sons, Inc., New York MR208571
- Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212 Zbl0722.53028MR1024425
- Burt Rodin, Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), 349-360 Zbl0694.30006MR906396
- Oded Schramm, Square tilings with prescribed combinatorics, Israel J. Math. 84 (1993), 97-118 Zbl0788.05019MR1244661
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381 Zbl0496.57005MR648524
- Jeremy Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001), 21-73 (electronic) Zbl0981.30015MR1872156
- Jussi Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218-234 Zbl0593.30022MR801295
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.