Circle packings and combinatorial moduli

Peter HaÏssinsky[1]

  • [1] Université de Provence LATP/CMI 39, rue Frédéric Joliot-Curie 13453 Marseille Cedex 13 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 6, page 2175-2222
  • ISSN: 0373-0956

Abstract

top
The aim of this article is to explain the deep relationships between circle-packings and combinatorial moduli of curves, and to compare the approaches to Cannon’s conjecture to which they lead.

How to cite

top

HaÏssinsky, Peter. "Empilements de cercles et modules combinatoires." Annales de l’institut Fourier 59.6 (2009): 2175-2222. <http://eudml.org/doc/10452>.

@article{HaÏssinsky2009,
abstract = {Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.},
affiliation = {Université de Provence LATP/CMI 39, rue Frédéric Joliot-Curie 13453 Marseille Cedex 13 (France)},
author = {HaÏssinsky, Peter},
journal = {Annales de l’institut Fourier},
keywords = {Circle packings; quasiconformal; modulus of curves},
language = {fre},
number = {6},
pages = {2175-2222},
publisher = {Association des Annales de l’institut Fourier},
title = {Empilements de cercles et modules combinatoires},
url = {http://eudml.org/doc/10452},
volume = {59},
year = {2009},
}

TY - JOUR
AU - HaÏssinsky, Peter
TI - Empilements de cercles et modules combinatoires
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2175
EP - 2222
AB - Le but de cette note est de tenter d’expliquer les liens étroits qui unissent la théorie des empilements de cercles et des modules combinatoires et de comparer les approches à la conjecture de J.W. Cannon qui en découlent.
LA - fre
KW - Circle packings; quasiconformal; modulus of curves
UR - http://eudml.org/doc/10452
ER -

References

top
  1. Lars V. Ahlfors, Lectures on quasiconformal mappings, (1966), D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London Zbl0138.06002MR2241787
  2. Lars V. Ahlfors, Conformal invariants : topics in geometric function theory, (1973), McGraw-Hill Book Co., New York Zbl0272.30012MR357743
  3. B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987 1351 (1988), 52-68, Springer, Berlin Zbl0662.46037MR982072
  4. Mario Bonk, Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127-183 Zbl1037.53023MR1930885
  5. Mario Bonk, Bruce Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), 81-106 Zbl1044.37015MR1949785
  6. Mario Bonk, Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219-246 (electronic) Zbl1087.20033MR2116315
  7. James W. Cannon, The theory of negatively curved spaces and groups, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989) (1991), 315-369, Oxford Univ. Press, New York Zbl0764.57002MR1130181
  8. James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234 Zbl0832.30012MR1301392
  9. James W. Cannon, William J. Floyd, Walter R. Parry, Squaring rectangles : the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus : groups, geometry and special functions (Brooklyn, NY, 1992) 169 (1994), 133-212, Amer. Math. Soc., Providence, RI Zbl0818.20043MR1292901
  10. James W. Cannon, William J. Floyd, Walter R. Parry, Sufficiently rich families of planar rings, Ann. Acad. Sci. Fenn. Math. 24 (1999), 265-304 Zbl0939.20048MR1724092
  11. James W. Cannon, Eric L. Swenson, Recognizing constant curvature discrete groups in dimension 3 , Trans. Amer. Math. Soc. 350 (1998), 809-849 Zbl0910.20024MR1458317
  12. Yves Colin de Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991), 655-669 Zbl0745.52010MR1106755
  13. Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73 Zbl0474.20018MR623534
  14. Juha Heinonen, Lectures on analysis on metric spaces, (2001), Springer-Verlag, New York Zbl0985.46008MR1800917
  15. Juha Heinonen, Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61 Zbl0915.30018MR1654771
  16. Stephen Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245 (2003), 255-292 Zbl1037.31009MR2013501
  17. Stephen Keith, Tomi Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278-1321 Zbl1108.28008MR2135168
  18. Paul Koebe, Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-phys 88 (1936), 141-164 Zbl62.1217.04
  19. Jun-iti Nagata, Modern dimension theory, (1965), Interscience Publishers John Wiley & Sons, Inc., New York MR208571
  20. Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212 Zbl0722.53028MR1024425
  21. Burt Rodin, Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), 349-360 Zbl0694.30006MR906396
  22. Oded Schramm, Square tilings with prescribed combinatorics, Israel J. Math. 84 (1993), 97-118 Zbl0788.05019MR1244661
  23. William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381 Zbl0496.57005MR648524
  24. Jeremy Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001), 21-73 (electronic) Zbl0981.30015MR1872156
  25. Jussi Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85), 218-234 Zbl0593.30022MR801295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.