On the conformal gauge of a compact metric space
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 3, page 495-548
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCarrasco Piaggio, Matias. "On the conformal gauge of a compact metric space." Annales scientifiques de l'École Normale Supérieure 46.3 (2013): 495-548. <http://eudml.org/doc/272223>.
@article{CarrascoPiaggio2013,
abstract = {In this article we study the Ahlfors regular conformal gauge of a compact metric space $(X,d)$, and its conformal dimension $\dim _\{AR\}(X,d)$. Using a sequence of finite coverings of $(X,d)$, we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute $\dim _\{AR\}(X,d)$ using the critical exponent $Q_N$ associated to the combinatorial modulus.},
author = {Carrasco Piaggio, Matias},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Ahlfors regular; conformal gauge; conformal dimension; combinatorial modulus; Gromov-hyperbolic},
language = {eng},
number = {3},
pages = {495-548},
publisher = {Société mathématique de France},
title = {On the conformal gauge of a compact metric space},
url = {http://eudml.org/doc/272223},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Carrasco Piaggio, Matias
TI - On the conformal gauge of a compact metric space
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 3
SP - 495
EP - 548
AB - In this article we study the Ahlfors regular conformal gauge of a compact metric space $(X,d)$, and its conformal dimension $\dim _{AR}(X,d)$. Using a sequence of finite coverings of $(X,d)$, we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute $\dim _{AR}(X,d)$ using the critical exponent $Q_N$ associated to the combinatorial modulus.
LA - eng
KW - Ahlfors regular; conformal gauge; conformal dimension; combinatorial modulus; Gromov-hyperbolic
UR - http://eudml.org/doc/272223
ER -
References
top- [1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., 1973. Zbl0272.30012MR357743
- [2] M. Bonk, Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 1349–1373. Zbl1102.30016MR2275649
- [3] M. Bonk, J. Heinonen & P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001). Zbl0970.30010MR1829896
- [4] M. Bonk & B. Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math.150 (2002), 127–183. Zbl1037.53023MR1930885
- [5] M. Bonk & B. Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol.9 (2005), 219–246. Zbl1087.20033MR2116315
- [6] M. Bourdon & B. Kleiner, Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn.7 (2013), 39–107. Zbl06147446MR3019076
- [7] M. Bourdon & B. Kleiner, Some applications of -cohomology to boundaries of Gromov hyperbolic spaces, preprint arXiv:1203.1233. Zbl06466521
- [8] M. Bourdon & H. Pajot, Cohomologie et espaces de Besov, J. reine angew. Math. 558 (2003), 85–108. MR1979183
- [9] J. W. Cannon, The combinatorial Riemann mapping theorem, Acta Math.173 (1994), 155–234. Zbl0832.30012MR1301392
- [10] M. Carrasco Piaggio, Jauge conforme des espaces métriques compacts, Thèse, Université Aix-Marseille, 2011.
- [11] M. Carrasco Piaggio, Conformal dimension and canonical splittings of hyperbolic groups, preprint arXiv:1301.6492.
- [12] M. Christ, A theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628. Zbl0758.42009MR1096400
- [13] M. Coornaert, T. Delzant & A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, 1990. Zbl0727.20018MR1075994
- [14] G. David & S. Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications 7, The Clarendon Press Oxford Univ. Press, 1997. Zbl0887.54001MR1616732
- [15] G. Elek, The -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata68 (1997), 263–279. Zbl0899.53035MR1486435
- [16] É. Ghys & P. de la Harpe (éds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. MR1086648
- [17] P. Haïssinsky, Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble) 59 (2009), 2175–2222. MR2640918
- [18] P. Haïssinsky, Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, Séminaire Bourbaki, vol. 2007/08, exp. no 993, Astérisque 326 (2009), 321–362. MR2605327
- [19] P. Haïssinsky & K. M. Pilgrim, Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl.90 (2008), 229–241. Zbl1213.30048MR2446078
- [20] P. Haïssinsky & K. M. Pilgrim, Coarse expanding conformal dynamics, Astérisque 325 (2009). Zbl1206.37002MR2662902
- [21] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer, 2001. MR1800917
- [22] S. Keith & T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal.14 (2004), 1278–1321. Zbl1108.28008MR2135168
- [23] B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 743–768. Zbl1108.30014MR2275621
- [24] L. V. Kovalev, Conformal dimension does not assume values between zero and one, Duke Math. J.134 (2006), 1–13. Zbl1104.28002MR2239342
- [25] G. Lupo-Krebs & H. Pajot, Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires, in Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003–2004, Sémin. Théor. Spectr. Géom. 22, Univ. Grenoble I, 2004, 153–182. MR2136141
- [26] J. M. Mackay & J. T. Tyson, Conformal dimension; theory and application, University Lecture Series 54, Amer. Math. Soc., 2010. MR2662522
- [27] P. Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math.14 (1989), 177–212. Zbl0722.53028MR1024425
- [28] S. Semmes, Metric spaces and mappings seen at many scales, in Metric structures for Riemannian and Non-Riemmannian spaces (M. Gromov, éd.), Birkhäuser, 2001.
- [29] P. Tukia & J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980), 97–114. Zbl0403.54005MR595180
- [30] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math.23 (1998), 525–548. Zbl0910.30022MR1642158
- [31] A. L. Volʼberg & S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 666–675; English translation: Math. USSR-Izv. 30 (1988), 629–638. Zbl0649.42010MR903629
- [32] J.-M. Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc.126 (1998), 1453–1459. Zbl0897.28008MR1443418
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.