On the conformal gauge of a compact metric space

Matias Carrasco Piaggio

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 3, page 495-548
  • ISSN: 0012-9593

Abstract

top
In this article we study the Ahlfors regular conformal gauge of a compact metric space ( X , d ) , and its conformal dimension dim A R ( X , d ) . Using a sequence of finite coverings of  ( X , d ) , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim A R ( X , d ) using the critical exponent Q N associated to the combinatorial modulus.

How to cite

top

Carrasco Piaggio, Matias. "On the conformal gauge of a compact metric space." Annales scientifiques de l'École Normale Supérieure 46.3 (2013): 495-548. <http://eudml.org/doc/272223>.

@article{CarrascoPiaggio2013,
abstract = {In this article we study the Ahlfors regular conformal gauge of a compact metric space $(X,d)$, and its conformal dimension $\dim _\{AR\}(X,d)$. Using a sequence of finite coverings of $(X,d)$, we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute $\dim _\{AR\}(X,d)$ using the critical exponent $Q_N$ associated to the combinatorial modulus.},
author = {Carrasco Piaggio, Matias},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Ahlfors regular; conformal gauge; conformal dimension; combinatorial modulus; Gromov-hyperbolic},
language = {eng},
number = {3},
pages = {495-548},
publisher = {Société mathématique de France},
title = {On the conformal gauge of a compact metric space},
url = {http://eudml.org/doc/272223},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Carrasco Piaggio, Matias
TI - On the conformal gauge of a compact metric space
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 3
SP - 495
EP - 548
AB - In this article we study the Ahlfors regular conformal gauge of a compact metric space $(X,d)$, and its conformal dimension $\dim _{AR}(X,d)$. Using a sequence of finite coverings of $(X,d)$, we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute $\dim _{AR}(X,d)$ using the critical exponent $Q_N$ associated to the combinatorial modulus.
LA - eng
KW - Ahlfors regular; conformal gauge; conformal dimension; combinatorial modulus; Gromov-hyperbolic
UR - http://eudml.org/doc/272223
ER -

References

top
  1. [1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., 1973. Zbl0272.30012MR357743
  2. [2] M. Bonk, Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 1349–1373. Zbl1102.30016MR2275649
  3. [3] M. Bonk, J. Heinonen & P. Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001). Zbl0970.30010MR1829896
  4. [4] M. Bonk & B. Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math.150 (2002), 127–183. Zbl1037.53023MR1930885
  5. [5] M. Bonk & B. Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol.9 (2005), 219–246. Zbl1087.20033MR2116315
  6. [6] M. Bourdon & B. Kleiner, Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn.7 (2013), 39–107. Zbl06147446MR3019076
  7. [7] M. Bourdon & B. Kleiner, Some applications of p -cohomology to boundaries of Gromov hyperbolic spaces, preprint arXiv:1203.1233. Zbl06466521
  8. [8] M. Bourdon & H. Pajot, Cohomologie p et espaces de Besov, J. reine angew. Math. 558 (2003), 85–108. MR1979183
  9. [9] J. W. Cannon, The combinatorial Riemann mapping theorem, Acta Math.173 (1994), 155–234. Zbl0832.30012MR1301392
  10. [10] M. Carrasco Piaggio, Jauge conforme des espaces métriques compacts, Thèse, Université Aix-Marseille, 2011. 
  11. [11] M. Carrasco Piaggio, Conformal dimension and canonical splittings of hyperbolic groups, preprint arXiv:1301.6492. 
  12. [12] M. Christ, A T ( b ) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628. Zbl0758.42009MR1096400
  13. [13] M. Coornaert, T. Delzant & A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, 1990. Zbl0727.20018MR1075994
  14. [14] G. David & S. Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications 7, The Clarendon Press Oxford Univ. Press, 1997. Zbl0887.54001MR1616732
  15. [15] G. Elek, The l p -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata68 (1997), 263–279. Zbl0899.53035MR1486435
  16. [16] É. Ghys & P. de la Harpe (éds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. MR1086648
  17. [17] P. Haïssinsky, Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble) 59 (2009), 2175–2222. MR2640918
  18. [18] P. Haïssinsky, Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, Séminaire Bourbaki, vol. 2007/08, exp. no 993, Astérisque 326 (2009), 321–362. MR2605327
  19. [19] P. Haïssinsky & K. M. Pilgrim, Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl.90 (2008), 229–241. Zbl1213.30048MR2446078
  20. [20] P. Haïssinsky & K. M. Pilgrim, Coarse expanding conformal dynamics, Astérisque 325 (2009). Zbl1206.37002MR2662902
  21. [21] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer, 2001. MR1800917
  22. [22] S. Keith & T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal.14 (2004), 1278–1321. Zbl1108.28008MR2135168
  23. [23] B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 743–768. Zbl1108.30014MR2275621
  24. [24] L. V. Kovalev, Conformal dimension does not assume values between zero and one, Duke Math. J.134 (2006), 1–13. Zbl1104.28002MR2239342
  25. [25] G. Lupo-Krebs & H. Pajot, Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires, in Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003–2004, Sémin. Théor. Spectr. Géom. 22, Univ. Grenoble I, 2004, 153–182. MR2136141
  26. [26] J. M. Mackay & J. T. Tyson, Conformal dimension; theory and application, University Lecture Series 54, Amer. Math. Soc., 2010. MR2662522
  27. [27] P. Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math.14 (1989), 177–212. Zbl0722.53028MR1024425
  28. [28] S. Semmes, Metric spaces and mappings seen at many scales, in Metric structures for Riemannian and Non-Riemmannian spaces (M. Gromov, éd.), Birkhäuser, 2001. 
  29. [29] P. Tukia & J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980), 97–114. Zbl0403.54005MR595180
  30. [30] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math.23 (1998), 525–548. Zbl0910.30022MR1642158
  31. [31] A. L. Volʼberg & S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 666–675; English translation: Math. USSR-Izv. 30 (1988), 629–638. Zbl0649.42010MR903629
  32. [32] J.-M. Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc.126 (1998), 1453–1459. Zbl0897.28008MR1443418

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.