Morales-Ramis Theorems via Malgrange pseudogroup

Guy Casale[1]

  • [1] Université de Rennes 1 IRMAR-UMR 6625 CNRS 35042 Rennes Cedex (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 7, page 2593-2610
  • ISSN: 0373-0956

Abstract

top
In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.

How to cite

top

Casale, Guy. "Morales-Ramis Theorems via Malgrange pseudogroup." Annales de l’institut Fourier 59.7 (2009): 2593-2610. <http://eudml.org/doc/10465>.

@article{Casale2009,
abstract = {In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.},
affiliation = {Université de Rennes 1 IRMAR-UMR 6625 CNRS 35042 Rennes Cedex (France)},
author = {Casale, Guy},
journal = {Annales de l’institut Fourier},
keywords = {Differential Galois theory; variational equation; integrability; differential Galois theory},
language = {eng},
number = {7},
pages = {2593-2610},
publisher = {Association des Annales de l’institut Fourier},
title = {Morales-Ramis Theorems via Malgrange pseudogroup},
url = {http://eudml.org/doc/10465},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Casale, Guy
TI - Morales-Ramis Theorems via Malgrange pseudogroup
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2593
EP - 2610
AB - In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.
LA - eng
KW - Differential Galois theory; variational equation; integrability; differential Galois theory
UR - http://eudml.org/doc/10465
ER -

References

top
  1. Mark Adler, Pierre van Moerbeke, Pol Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, 47 (2004), Springer-Verlag, Berlin Zbl1083.37001MR2095251
  2. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291 Zbl0172.05301MR232018
  3. Michèle Audin, Les systèmes hamiltoniens et leur intégrabilité, 8 (2001), Société Mathématique de France, Paris Zbl1144.37001MR1972063
  4. M. Ayoul, N. T. Zung, Galoisian obstruction to non-Hamiltonian integrability, (2009) Zbl1210.37076
  5. Manuel Bronstein, Sébastien Lafaille, Solutions of linear ordinary differential equations in terms of special functions, Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (2002), 23-28 (electronic), ACM, New York Zbl1072.68652MR2035229
  6. M. Canalis, J.-P. Ramis, P. Rouchon, J.-A. Weil, Calculations on the Lorenz system: Variational equation, Bessel dynamics, (2001) 
  7. G. Casale, Une preuve galoisienne de l’irréductibilité au sens de Nishioka-Umemura de la 1ère équation de Painlevé, Astérisque, Soc. Math. de France 324 (2009), 83-100 
  8. Guy Casale, Julien Roques, Dynamics of rational symplectic mappings and difference Galois theory, Int. Math. Res. Not. IMRN (2008) Zbl1172.37022MR2439539
  9. Richard C. Churchill, David L. Rod, On the determination of Ziglin monodromy groups, SIAM J. Math. Anal. 22 (1991), 1790-1802 Zbl0739.58018MR1129412
  10. Richard C. Churchill, David L. Rod, M. F. Singer, Group-theoretic obstructions to integrability, Ergodic Theory Dynam. Systems 15 (1995), 15-48 Zbl0824.58021
  11. Pierre Gabriel, Construction de préschémas quotient, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64), Fasc. 2a, Exposé 5 (1963), Inst. Hautes Études Sci., Paris MR257095
  12. Victor W. Guillemin, Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-47 Zbl0121.38801MR170295
  13. Hidekazu Ito, On the holonomy group associated with analytic continuations of solutions for integrable systems, Bol. Soc. Brasil. Mat. (N.S.) 21 (1990), 95-120 Zbl0762.58015MR1139560
  14. Andrzej J. Maciejewski, Maria Przybylska, Differential Galois obstructions for non-commutative integrability, Phys. Lett. A 372 (2008), 5431-5435 Zbl1223.37067MR2439693
  15. K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, 124 (1987), Cambridge University Press, Cambridge Zbl0683.53029MR896907
  16. Bernard Malgrange, Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 38 (2001), 465-501, Enseignement Math., Geneva Zbl1033.32020MR1929336
  17. Bernard Malgrange, On nonlinear differential Galois theory, Chinese Ann. Math. Ser. B 23 (2002), 219-226 Zbl1009.12005MR1924138
  18. Bernard Malgrange, Personal discutions, (2007) 
  19. J. J. Morales, C. Simó, Picard-Vessiot theory and Ziglin’s theorem, J. Differential Equations 107 (1994), 140-162 Zbl0799.58035MR1260852
  20. Juan J. Morales-Ruiz, A remark about the Painlevé transcendents, Théories asymptotiques et équations de Painlevé 14 (2006), 229-235, Soc. Math. France, Paris Zbl1140.37016MR2353467
  21. Juan J. Morales-Ruiz, Jean Pierre Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I, II, Methods Appl. Anal. 8 (2001), 33-95, 97–111 Zbl1140.37354MR1867495
  22. Juan J. Morales-Ruiz, Jean-Pierre Ramis, Carles Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884 Zbl1144.37023MR2419851
  23. Masatoshi Noumi, Kazuo Okamoto, Irreducibility of the second and the fourth Painlevé equations, Funkcial. Ekvac. 40 (1997), 139-163 Zbl0881.34052MR1454468
  24. J.-F. Pommaret, Differential Galois theory, 15 (1983), Gordon & Breach Science Publishers, New York Zbl0539.12013MR720863
  25. Maria Przybylska, Differential Galois obstructions for integrability of homogeneous Newton equations, J. Math. Phys. 49 (2008) Zbl1153.81420MR2392854
  26. Joseph Fels Ritt, Differential algebra, (1966), Dover Publications Inc., New York Zbl0141.03801MR201431
  27. Hiroshi Umemura, Humihiko Watanabe, Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151-198 Zbl0934.33029MR1492945
  28. S. L. Ziglin, Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I, Funct. Anal. Appl. 16 (1983), 181-189 Zbl0524.58015
  29. Nguyen Tien Zung, Convergence versus integrability in Poincaré-Dulac normal form., Math. Res. Lett. 9 (2002), 217-228 Zbl1019.34084MR1909639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.