Morales-Ramis Theorems via Malgrange pseudogroup
Guy Casale[1]
- [1] Université de Rennes 1 IRMAR-UMR 6625 CNRS 35042 Rennes Cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2593-2610
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCasale, Guy. "Morales-Ramis Theorems via Malgrange pseudogroup." Annales de l’institut Fourier 59.7 (2009): 2593-2610. <http://eudml.org/doc/10465>.
@article{Casale2009,
abstract = {In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.},
affiliation = {Université de Rennes 1 IRMAR-UMR 6625 CNRS 35042 Rennes Cedex (France)},
author = {Casale, Guy},
journal = {Annales de l’institut Fourier},
keywords = {Differential Galois theory; variational equation; integrability; differential Galois theory},
language = {eng},
number = {7},
pages = {2593-2610},
publisher = {Association des Annales de l’institut Fourier},
title = {Morales-Ramis Theorems via Malgrange pseudogroup},
url = {http://eudml.org/doc/10465},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Casale, Guy
TI - Morales-Ramis Theorems via Malgrange pseudogroup
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2593
EP - 2610
AB - In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.
LA - eng
KW - Differential Galois theory; variational equation; integrability; differential Galois theory
UR - http://eudml.org/doc/10465
ER -
References
top- Mark Adler, Pierre van Moerbeke, Pol Vanhaecke, Algebraic integrability, Painlevé geometry and Lie algebras, 47 (2004), Springer-Verlag, Berlin Zbl1083.37001MR2095251
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291 Zbl0172.05301MR232018
- Michèle Audin, Les systèmes hamiltoniens et leur intégrabilité, 8 (2001), Société Mathématique de France, Paris Zbl1144.37001MR1972063
- M. Ayoul, N. T. Zung, Galoisian obstruction to non-Hamiltonian integrability, (2009) Zbl1210.37076
- Manuel Bronstein, Sébastien Lafaille, Solutions of linear ordinary differential equations in terms of special functions, Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (2002), 23-28 (electronic), ACM, New York Zbl1072.68652MR2035229
- M. Canalis, J.-P. Ramis, P. Rouchon, J.-A. Weil, Calculations on the Lorenz system: Variational equation, Bessel dynamics, (2001)
- G. Casale, Une preuve galoisienne de l’irréductibilité au sens de Nishioka-Umemura de la 1ère équation de Painlevé, Astérisque, Soc. Math. de France 324 (2009), 83-100
- Guy Casale, Julien Roques, Dynamics of rational symplectic mappings and difference Galois theory, Int. Math. Res. Not. IMRN (2008) Zbl1172.37022MR2439539
- Richard C. Churchill, David L. Rod, On the determination of Ziglin monodromy groups, SIAM J. Math. Anal. 22 (1991), 1790-1802 Zbl0739.58018MR1129412
- Richard C. Churchill, David L. Rod, M. F. Singer, Group-theoretic obstructions to integrability, Ergodic Theory Dynam. Systems 15 (1995), 15-48 Zbl0824.58021
- Pierre Gabriel, Construction de préschémas quotient, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64), Fasc. 2a, Exposé 5 (1963), Inst. Hautes Études Sci., Paris MR257095
- Victor W. Guillemin, Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-47 Zbl0121.38801MR170295
- Hidekazu Ito, On the holonomy group associated with analytic continuations of solutions for integrable systems, Bol. Soc. Brasil. Mat. (N.S.) 21 (1990), 95-120 Zbl0762.58015MR1139560
- Andrzej J. Maciejewski, Maria Przybylska, Differential Galois obstructions for non-commutative integrability, Phys. Lett. A 372 (2008), 5431-5435 Zbl1223.37067MR2439693
- K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, 124 (1987), Cambridge University Press, Cambridge Zbl0683.53029MR896907
- Bernard Malgrange, Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 38 (2001), 465-501, Enseignement Math., Geneva Zbl1033.32020MR1929336
- Bernard Malgrange, On nonlinear differential Galois theory, Chinese Ann. Math. Ser. B 23 (2002), 219-226 Zbl1009.12005MR1924138
- Bernard Malgrange, Personal discutions, (2007)
- J. J. Morales, C. Simó, Picard-Vessiot theory and Ziglin’s theorem, J. Differential Equations 107 (1994), 140-162 Zbl0799.58035MR1260852
- Juan J. Morales-Ruiz, A remark about the Painlevé transcendents, Théories asymptotiques et équations de Painlevé 14 (2006), 229-235, Soc. Math. France, Paris Zbl1140.37016MR2353467
- Juan J. Morales-Ruiz, Jean Pierre Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I, II, Methods Appl. Anal. 8 (2001), 33-95, 97–111 Zbl1140.37354MR1867495
- Juan J. Morales-Ruiz, Jean-Pierre Ramis, Carles Simó, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884 Zbl1144.37023MR2419851
- Masatoshi Noumi, Kazuo Okamoto, Irreducibility of the second and the fourth Painlevé equations, Funkcial. Ekvac. 40 (1997), 139-163 Zbl0881.34052MR1454468
- J.-F. Pommaret, Differential Galois theory, 15 (1983), Gordon & Breach Science Publishers, New York Zbl0539.12013MR720863
- Maria Przybylska, Differential Galois obstructions for integrability of homogeneous Newton equations, J. Math. Phys. 49 (2008) Zbl1153.81420MR2392854
- Joseph Fels Ritt, Differential algebra, (1966), Dover Publications Inc., New York Zbl0141.03801MR201431
- Hiroshi Umemura, Humihiko Watanabe, Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151-198 Zbl0934.33029MR1492945
- S. L. Ziglin, Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I, Funct. Anal. Appl. 16 (1983), 181-189 Zbl0524.58015
- Nguyen Tien Zung, Convergence versus integrability in Poincaré-Dulac normal form., Math. Res. Lett. 9 (2002), 217-228 Zbl1019.34084MR1909639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.