On a general difference Galois theory I

Shuji Morikawa[1]

  • [1] Nagoya University Graduate School of Mathematics Nagoya (Japan)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 7, page 2709-2732
  • ISSN: 0373-0956

Abstract

top
We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0 , we attach its Galois group, which is a group of coordinate transformation.

How to cite

top

Morikawa, Shuji. "On a general difference Galois theory I." Annales de l’institut Fourier 59.7 (2009): 2709-2732. <http://eudml.org/doc/10469>.

@article{Morikawa2009,
abstract = {We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic $0$, we attach its Galois group, which is a group of coordinate transformation.},
affiliation = {Nagoya University Graduate School of Mathematics Nagoya (Japan)},
author = {Morikawa, Shuji},
journal = {Annales de l’institut Fourier},
keywords = {General difference Galois theory; dynamical system; integrable dynamical system; Galois groupoid; difference equations; Galois theory; infinite-dimensional Lie algebras},
language = {eng},
number = {7},
pages = {2709-2732},
publisher = {Association des Annales de l’institut Fourier},
title = {On a general difference Galois theory I},
url = {http://eudml.org/doc/10469},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Morikawa, Shuji
TI - On a general difference Galois theory I
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2709
EP - 2732
AB - We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic $0$, we attach its Galois group, which is a group of coordinate transformation.
LA - eng
KW - General difference Galois theory; dynamical system; integrable dynamical system; Galois groupoid; difference equations; Galois theory; infinite-dimensional Lie algebras
UR - http://eudml.org/doc/10469
ER -

References

top
  1. G. Casale, Sur le groupoïde de Galois d’un feuilletage, (2004), Toulouse 
  2. G. Casale, Enveloppe galoisienne d’une application rationnelle de 1 , Publ. Mat. 50 (2006), 191-202 Zbl1137.37022MR2325017
  3. Charles H. Franke, Picard-Vessiot theory of linear homogeneous difference equations, Trans. Amer. Math. Soc. 108 (1963), 491-515 Zbl0116.02604MR155819
  4. A. Granier, Un D -groupoïde de Galois pour les équations au q -différences, (2009), Toulouse 
  5. Charlotte Hardouin, Michael F. Singer, Differential Galois theory of linear difference equations, Math. Ann. 342 (2008), 333-377 Zbl1163.12002MR2425146
  6. F. Heiderlich, Infinitesimal Galois theory for D -module fields 
  7. B. Malgrange, Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 38 (2001), 465-501, Enseignement Math., Geneva Zbl1033.32020MR1929336
  8. S. Morikawa, H Umemura, On a general Galois theory of difference equations II, Ann. Inst. Fourier 59 (2009), 2733-2771 Zbl1194.12006
  9. Marius van der Put, Michael F. Singer, Galois theory of difference equations, 1666 (1997), Springer-Verlag, Berlin Zbl0930.12006MR1480919
  10. Hiroshi Umemura, Differential Galois theory of infinite dimension, Nagoya Math. J. 144 (1996), 59-135 Zbl0878.12002MR1425592
  11. Hiroshi Umemura, Galois theory of algebraic and differential equations, Nagoya Math. J. 144 (1996), 1-58 Zbl0885.12004MR1425591
  12. Hiroshi Umemura, Galois theory and Painlevé equations, Théories asymptotiques et équations de Painlevé 14 (2006), 299-339, Soc. Math. France, Paris Zbl1156.34080MR2353471
  13. Hiroshi Umemura, Invitation to Galois theory, Differential equations and quantum groups 9 (2007), 269-289, Eur. Math. Soc., Zürich MR2322334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.