On a general difference Galois theory II
Shuji Morikawa[1]; Hiroshi Umemura[1]
- [1] Nagoya University Graduate School of Mathematics Nagoya (Japan)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2733-2771
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMorikawa, Shuji, and Umemura, Hiroshi. "On a general difference Galois theory II." Annales de l’institut Fourier 59.7 (2009): 2733-2771. <http://eudml.org/doc/10470>.
@article{Morikawa2009,
abstract = {We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.},
affiliation = {Nagoya University Graduate School of Mathematics Nagoya (Japan); Nagoya University Graduate School of Mathematics Nagoya (Japan)},
author = {Morikawa, Shuji, Umemura, Hiroshi},
journal = {Annales de l’institut Fourier},
keywords = {General difference Galois theory; dynamical system; integrable dynamical system; Galois groupoid; difference Galois theory; discrete dynamical system},
language = {eng},
number = {7},
pages = {2733-2771},
publisher = {Association des Annales de l’institut Fourier},
title = {On a general difference Galois theory II},
url = {http://eudml.org/doc/10470},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Morikawa, Shuji
AU - Umemura, Hiroshi
TI - On a general difference Galois theory II
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2733
EP - 2771
AB - We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.
LA - eng
KW - General difference Galois theory; dynamical system; integrable dynamical system; Galois groupoid; difference Galois theory; discrete dynamical system
UR - http://eudml.org/doc/10470
ER -
References
top- G. Casale, Sur le groupoïde de Galois d’un feuilletage, (2004)
- G. Casale, Enveloppe galoisienne d’une application rationnelle de , Publ. Mat. 50 (2006), 191-202 Zbl1137.37022MR2325017
- M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507-588 Zbl0223.14009MR284446
- A. Grothendieck, Techniques de constructions et théorème d’existence en géométrie algébrique III, Préschémas quotients, Séminaire Bourbaki, Vol. 6 (1995), Exp. No. 212, 99-118, Soc. Math. France, Paris Zbl0235.14007
- E. Kolchin, Differential algebra and algebraic groups, (1973), Academic Press, New York-London Zbl0264.12102MR568864
- S. Lie, Théorie des Transformationsgruppen, (1930), Teubner
- B. Malgrange, Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 38 (2001), 465-501, Enseignement Math., Geneva Zbl1033.32020MR1929336
- S. Morikawa, On a general Galois theory of difference equations I, Ann. Inst. Fourier, Grenoble (2010)
- J. H. Silverman, The arithmetic of dynamical systems, 241 (2007), Springer, New York Zbl1130.37001MR2316407
- H. Umemura, Differential Galois theory of infinite dimension, Nagoya Math. J. 144 (1996), 59-135 Zbl0878.12002MR1425592
- H. Umemura, Galois theory and Painlevé equations, Théories asymptotiques et équations de Painlevé 14 (2006), 299-339, Soc. Math. France, Paris Zbl1156.34080MR2353471
- H. Umemura, Invitation to Galois theory, Differential equations and quantum groups 9 (2007), 269-289, Eur. Math. Soc., Zürich MR2322334
- H. Umemura, Sur l’équivalence des théories de Galois différentielles générales, C. R. Math. Acad. Sci. Paris 346 (2008), 1155-1158 Zbl1204.12009MR2464256
- H. Umemura, On the definition of Galois groupoid, Differential Equations and Singularities, 60 years of J.M. Aroca 323 (2010), Soc. Math. France Zbl1205.12005
- A. P. Veselov, Integrable mappings, Russian Math. Surveys 46 (1991), 1-51 Zbl0785.58027MR1160332
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.