On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles
- [1] Kyoto University Research Institute for Mathematical Sciences Kyoto 606-8502 (Japan)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2819-2837
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMochizuki, Takuro. "On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles." Annales de l’institut Fourier 59.7 (2009): 2819-2837. <http://eudml.org/doc/10473>.
@article{Mochizuki2009,
abstract = {In this short survey, we would like to overview the recent development of the study on Deligne-Malgrange lattices and resolution of turning points for algebraic meromorphic flat bundles. We also explain their relation with wild harmonic bundles. The author hopes that it would be helpful for access to his work on wild harmonic bundles.},
affiliation = {Kyoto University Research Institute for Mathematical Sciences Kyoto 606-8502 (Japan)},
author = {Mochizuki, Takuro},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic bundle; meromorphic flat bundle; Deligne-Malgrange lattice; harmonic bundles; pluri-harmonic metrics; meromorphic flat bundles; semi-simplicity; Deligne-Malgrange lattices; irregular singularities, resolution of turning points; Kobayashi-Hitchin correspondence},
language = {eng},
number = {7},
pages = {2819-2837},
publisher = {Association des Annales de l’institut Fourier},
title = {On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles},
url = {http://eudml.org/doc/10473},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Mochizuki, Takuro
TI - On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2819
EP - 2837
AB - In this short survey, we would like to overview the recent development of the study on Deligne-Malgrange lattices and resolution of turning points for algebraic meromorphic flat bundles. We also explain their relation with wild harmonic bundles. The author hopes that it would be helpful for access to his work on wild harmonic bundles.
LA - eng
KW - Harmonic bundle; meromorphic flat bundle; Deligne-Malgrange lattice; harmonic bundles; pluri-harmonic metrics; meromorphic flat bundles; semi-simplicity; Deligne-Malgrange lattices; irregular singularities, resolution of turning points; Kobayashi-Hitchin correspondence
UR - http://eudml.org/doc/10473
ER -
References
top- Y. André, Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), 147-198 Zbl1149.32017MR2336081
- J. Bingener, Über Formale Komplexe Räume, Manuscripta Math. 24 (1978), 253-293 Zbl0381.32015MR492367
- O. Biquard, P. Boalch, Wild non-abelian Hodge theory on curves, 140 (2004), Compos. Math. Zbl1051.53019MR2004129
- K. Corlette, Flat -bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382 Zbl0676.58007MR965220
- P. Deligne, Équation différentielles à points singuliers réguliers, Lectures Notes in Maths. 163 (1970), Springer Zbl0244.14004MR417174
- J. Jost, K. Zuo, Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997), 469-503 Zbl0911.58012MR1617644
- N. Katz, Nilpotent connections and the monodromy theorem; applications of a result of Turrittin, Publ. Math. I.H.E.S. 39 (1970), 175-232 Zbl0221.14007MR291177
- K. Kedlaya, Good formal structures for flat meromorphic connections, I; Surfaces Zbl1204.14010
- Y. Laszlo, C. Pauly, On the Hitchin morphism in positive characteristic, (2001), Intenat. Math. Res. Notices Zbl0983.14004MR1810690
- A. Levelt, Jordan decomosition for a class of singular differential operators, Ark. Math. 13 (1975), 1-27 Zbl0305.34008MR500294
- H. Majima, Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics 1075 (1984), Springer-Verlag, Berlin Zbl0546.58003MR757897
- B. Malgrange, Connexions méromorphies , Le réseau canonique, Invent. Math. 124 (1996), 367-387 Zbl0849.32003MR1369422
- T. Mochizuki, Asymptotic behaviour of variation of pure polarized TERP structures Zbl1231.32013
- T. Mochizuki, Wild harmonic bundles and wild pure twistor -modules Zbl1245.32001
- T. Mochizuki, Kobayashi-Hitchin correspondence for tame harmoinc bundles and an application, Astérisque 309 (2006), Société Mathématique de France Zbl1119.14001MR2310103
- T. Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor -modules, I, II, 185 (2007), Mem. Amer. Math. Soc. Zbl1259.32005MR2283665
- T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces, Algebraic Analysis and Around 54 (2009), 223-253, Advanced Studies in Pure Mathematics Zbl1183.14027MR2499558
- T. Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles II, Geometry & Topology 13 (2009), 359-455 Zbl1176.14007MR2469521
- C. Sabbah, Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier (Grenoble) 49 (1999), 1265-1291 Zbl0947.32019MR1703088
- C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension , Astérisque 263 (2000), Société Mathématique de France, Paris Zbl0947.32005MR1741802
- C. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and application to uniformization, J. Amer. Math. Soc. 1 (1988), 867-918 Zbl0669.58008MR944577
- C. Simpson, Harmonic bundles on non-compact curves, J. Amer. Math. Soc. 3 (1990), 713-770 Zbl0713.58012MR1040197
- W. Wasow, Asymptotic expansions for ordinary equations, (1987) Zbl0136.08101
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.