Harmonic metrics and connections with irregular singularities

Claude Sabbah

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 4, page 1265-1291
  • ISSN: 0373-0956

Abstract

top
We identify the holomorphic de Rham complex of the minimal extension of a meromorphic vector bundle with connexion on a compact Riemann surface X with the L 2 complex relative to a suitable metric on the bundle and a complete metric on the punctured Riemann surface. Applying results of C. Simpson, we show the existence of a harmonic metric on this vector bundle, giving the same L 2 complex.

How to cite

top

Sabbah, Claude. "Harmonic metrics and connections with irregular singularities." Annales de l'institut Fourier 49.4 (1999): 1265-1291. <http://eudml.org/doc/75381>.

@article{Sabbah1999,
abstract = {We identify the holomorphic de Rham complex of the minimal extension of a meromorphic vector bundle with connexion on a compact Riemann surface $X$ with the $L^2$ complex relative to a suitable metric on the bundle and a complete metric on the punctured Riemann surface. Applying results of C. Simpson, we show the existence of a harmonic metric on this vector bundle, giving the same $L^2$ complex.},
author = {Sabbah, Claude},
journal = {Annales de l'institut Fourier},
keywords = {harmonic metric; irregular singularity; meromorphic connection; Poincaré lemma},
language = {eng},
number = {4},
pages = {1265-1291},
publisher = {Association des Annales de l'Institut Fourier},
title = {Harmonic metrics and connections with irregular singularities},
url = {http://eudml.org/doc/75381},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Sabbah, Claude
TI - Harmonic metrics and connections with irregular singularities
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1265
EP - 1291
AB - We identify the holomorphic de Rham complex of the minimal extension of a meromorphic vector bundle with connexion on a compact Riemann surface $X$ with the $L^2$ complex relative to a suitable metric on the bundle and a complete metric on the punctured Riemann surface. Applying results of C. Simpson, we show the existence of a harmonic metric on this vector bundle, giving the same $L^2$ complex.
LA - eng
KW - harmonic metric; irregular singularity; meromorphic connection; Poincaré lemma
UR - http://eudml.org/doc/75381
ER -

References

top
  1. [1] O. BIQUARD, Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse), Ann. Scient. Éc. Norm. Sup., 4e série, 50 (1997), 41-96. Zbl0876.53043MR98e:32054
  2. [2] M. CORNALBA, P. GRIFFITHS, Analytic cycles and vector bundles on noncompact algebraic varieties, Invent. Math., 28 (1975), 1-106. Zbl0293.32026MR51 #3505
  3. [3] J.-P. DEMAILLY, "Théorie de Hodge L2 et théorèmes d'annulation", Introduction à la théorie de Hodge, Panoramas et Synthèses, vol. 3, Société Mathématique de France, 1996, 3-111. 
  4. [4] M. KASHIWARA, Semisimple holonomic D-modules, in [6]. Zbl0935.32009
  5. [5] M. KASHIWARA, T. KAWAI, The Poincaré lemma for variations of polarized Hodge structure, Publ. RIMS, Kyoto Univ., 23 (1987), 345-407. Zbl0629.14005MR89g:32035
  6. [6] M. KASHIWARA, K. SAITO, A. MATSUO, I. SATAKE (eds.), Topological Field Theory, Primitive Forms and Related Topics, Progress in Math., vol. 160, Birkhäuser, Basel, Boston, 1998. Zbl0905.00081
  7. [7] B. MALGRANGE, Équations différentielles à coefficients polynomiaux, Progress in Math., vol. 96, Birkhäuser, Basel, Boston, 1991. Zbl0764.32001MR92k:32020
  8. [8] B. OPIC A. KUFNER, Hardy-type inequalities, Pitman Research Notes in Mathematics, vol. 219, Longman Scientific & Technical, Harlow, 1990. Zbl0698.26007MR92b:26028
  9. [9] Y. SIBUYA, Linear Differential Equations in the Complex Domain : Problems of Analytic Continuation, Translations of Mathematical Monographs, vol. 82, American Math. Society, Providence, RI, 1976 (japanese) and 1990. Zbl1145.34378
  10. [10] C. SIMPSON, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867-918. Zbl0669.58008MR90e:58026
  11. [11] C. SIMPSON, "Harmonic bundles on noncompact curves", J. Amer. Math. Soc., 3 (1990), 713-770. Zbl0713.58012MR91h:58029
  12. [12] W. WASOW, Asymptotic expansions for ordinary differential equations, Interscience, New York, 1965. Zbl0133.35301MR34 #3041
  13. [13] S. ZUCKER, Hodge theory with degenerating coefficients : L2-cohomology in the Poincaré metric, Ann. of Math., 109 (1979), 415-476. Zbl0446.14002MR81a:14002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.