Optimisation de procédés chimiques par une méthode de gradient réduit partie I. Présentation de l'algorithme

L. Pibouleau; P. Floquet; S. Domenech

RAIRO - Operations Research - Recherche Opérationnelle (1985)

  • Volume: 19, Issue: 3, page 247-274
  • ISSN: 0399-0559

How to cite

top

Pibouleau, L., Floquet, P., and Domenech, S.. "Optimisation de procédés chimiques par une méthode de gradient réduit partie I. Présentation de l'algorithme." RAIRO - Operations Research - Recherche Opérationnelle 19.3 (1985): 247-274. <http://eudml.org/doc/104883>.

@article{Pibouleau1985,
author = {Pibouleau, L., Floquet, P., Domenech, S.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {linear and nonlinear constraints; reduced gradient algorithm; chemical engineering; large-scale linearly constrained problems; linearization},
language = {fre},
number = {3},
pages = {247-274},
publisher = {EDP-Sciences},
title = {Optimisation de procédés chimiques par une méthode de gradient réduit partie I. Présentation de l'algorithme},
url = {http://eudml.org/doc/104883},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Pibouleau, L.
AU - Floquet, P.
AU - Domenech, S.
TI - Optimisation de procédés chimiques par une méthode de gradient réduit partie I. Présentation de l'algorithme
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1985
PB - EDP-Sciences
VL - 19
IS - 3
SP - 247
EP - 274
LA - fre
KW - linear and nonlinear constraints; reduced gradient algorithm; chemical engineering; large-scale linearly constrained problems; linearization
UR - http://eudml.org/doc/104883
ER -

References

top
  1. 1. J. ABADIE, The GRG Method for Nonlinear Programming, Design and Implementation of Optimization Software, Harvey Greenberg Sijthoff and Noordhof Ed., 1978. 
  2. 2. J. ABADIE et J. GUIGOU, Gradient Réduit Généralisé, note HI 069/02, EDF, Clamart, France, 1969. 
  3. 3. M. M. ABBOTT et M. C. VAN NESS, Théorie et applications de la thermodynamique, série Schaum, 1978. 
  4. 4. R. ARIS, R. BELLMAN et A. KALABA, Some Optimization Problems in Chemical Engineering, C.E.P. Symposium Series, 56, 1960, p. 95. 
  5. 5. R. H. BARTELS et G. H. GOLUB, The Simplex Method of Linear Programming Using LU Decomposition, Communications of the A.C.M., 12, 1969, p. 266. Zbl0181.19104
  6. 6. J. E. DENNIS et J. J. MORE, Quasi Newton Methods, Motivation and Theory, S.I.A.M. Rev., 19, 1977, p. 46. Zbl0356.65041MR445812
  7. 7. S. DOMENECH, Optimisation d'une opération de rectification discontinue - Commande en temps minimal, Thèse de Doctorat d'État, I.N.P., Toulouse, 1976. 
  8. 8. S. DOMENECH et M. ENJALBERT, Optimisation d'une opération de rectification discontinue par programmation dynamique, An. Quimi. Real Soc. Esp. Fis. Quim., 74, 1978, p. 319. 
  9. 9. S. DOMENECH, G. MURATET et N. THERIENRecherche de commandes optimales liées à l'alimentation d'une usine de traitement d'eaux usées, Tribune du Cebedeau, 31, 1978, p. 241. 
  10. 10. E. DURAND, Solutions numériques des équations algébriques, Tome II, Masson et Cie, Paris, 1972. Zbl0099.10801
  11. 11. R. FLETCHER et M. J. D. POWELL, On the Modification of LDLT Factorizations, Math. Comp., 28, 1974, p. 1067. Zbl0293.65018MR359297
  12. 12. J. J. FORREST et J. A. TOMLIN, Updated Triangular Factors of the Basis to Maintain Sparsity in the Product Form for Simplex Method, Math. Prog., 2, 1972, p. 263. Zbl0288.90048MR307692
  13. 13. P. E. GILL, G. H. GOLUB, W. MURRAY et M. A. SAUNDERS, Methods for Modifying Matrix Factorizations, Math. Comp., 28, 1974, p. 505. Zbl0289.65021MR343558
  14. 14. P. E. GILL et W. MURRAY, Numerical Methods for Constrained Optimization, Academic Press, 1974. Zbl0297.90082MR395227
  15. 15. P. E. GILL et W. MURRAY, Safeguarded Steplength Algorithms for Optimization Using Descent Methods, N.P.L. Report NAC 37, 1974. 
  16. 16. P. E. GILL, W. MURRAY, S. M. PICKEN et M. H. WRIGHT, The Design and Structure of a Fortran Program Library for Optimization, Report SOL 77-7, Stanford Univ., CA, 1977. Zbl0411.68029
  17. 17. P. E. GILL, W. MURRAY et M. A. SAUNDERS, Methods for Computing and Modifying the LDV Factors of a Matrix, Math. Comp., 29, 1975, p. 1051. Zbl0339.65022MR388754
  18. 18. A. GOMEZ et J. D. SEADER, Separation Sequences Synthesis by a Predictor Based Ordered Search, A.I.Ch.E. J., 22, 1976, p. 970. 
  19. 19. D. GOLDFARB, Matrix Factorization in Optimization of Nonlinear Functions Subject to Linear Constraints, Math. Prog., 10, 1975, p.1. Zbl0374.90060MR406523
  20. 20. D. GOLDFARB, Matrix Factorization in Optimization of Nonlinear Functions Subject to Linear Constraints - An Addendum, Math. Prog., 12, 1977, p. 279. Zbl0382.90082MR503798
  21. 21. J. B. HENDRICKSON, A General Protocol for Synthesis Design, Topics in Current Chemistry, 62, 1976, p. 49. 
  22. 22. E. HELLERMAN et D. RARICK, Reinversion with the Preassigned Pivot Procedure, Math. Prog., 1, 1971, p, 195. Zbl0246.65022MR293819
  23. 23. E. HELLERMAN et D. RARICK, The Partitioned Preassigned Pivot Procedure (P4), in Sparse Matrices and their Applications, Plenum Press, 1972, p. 67. Zbl0246.65022MR331743
  24. 24. HO THI DIEU, Optimisation continue d'un procédé chimique au moyen d'un calculateur analogique, Thèse M.S., Université de Laval, 1968. 
  25. 25. L. S. LASDON, R. L. FOX et M. W. RATNER, Nonlinear Optimization Using the Generalized Reduced Gradient Method, R.A.I.R.O., 3, 1974, p. 73. Zbl0329.90060MR451713
  26. 26. B. LINNHOFF, D. R. MASON et I. WARDLES, Understanding Heat Exchanger Networks, Comp. and Chem. Eng., 3, 1979, p. 295. 
  27. 27. B. LINNHOFF et J. A. TURNER, Heat-Recovery Networks: New Insights Yield Big Savings, Chem. Eng., 11, 1981, p. 56. 
  28. 28. M. A. MENZIES et A. I. JOHNSON, Synthesis of Optimal Energy Recovery Networks Using Discrete Methods, Can. J. Chem. Engineer., 50, 1972, p. 290. 
  29. 29. W. MURRAY, Numerical Methods for Unconstrained Optimization, Academic Press, 1972. 
  30. 30. B. A. MURTAGH, On the Simuitaneous Solution and Optimization of Large-Scale Engineering Systems, Comp. and Chem. Eng., 6, 1982, p.1. 
  31. 31. B. A. MURTAGH et R. W. H. SARGENT, Computational Experience with Quadratically Convergent Minimization Methods, Comp. J., 13, 1970, p. 185. Zbl0202.16303MR266403
  32. 32. B. A. MURTAGH et M. A. SAUNDERS, MINOS Use's Guide, Report SOL 77-9, Stanford Univ., CA, 1977. 
  33. 33. B. A. MURTAGH et M. A. SAUNDERS, Nonlinear Programming for Large, Sparse Systems, Report SOL 76-15, Stanford Univ., CA, 1976. 
  34. 34. B. A. MURTAGH et M. A. SAUNDERS, Large Scale Linearly Constrained Optimization, Math. Prog., 14, 1978, p. 41. Zbl0383.90074MR462607
  35. 35. B. A. MURTAGH et M. A. SAUNDERS, The Implementation of a Lagrangian-Based Algorithm for Sparse Nonlinear Constraints, Report SOL 80-1, Stanford Univ., CA, 1980. 
  36. 36. B. A. MURTAGH et M. A. SAUNDERS, MINOS/AUGMENTED User's Manual, Report SOL 80-14, Stanford Univ., CA, 1980. 
  37. 37. P. V. PRECKEL, Modules for Use with MINOS/AUGMENTED, Report SOL 80-15, Stanford Univ., CA, 1980. 
  38. 38. L. PIBOULEAU et S. DOMENECH, Une procédure arborescente pour la séparation de mélanges complexes dans l'industrie chimique, R.A.I.R.O., Rech. Op., 19, 1985, p. 35. Zbl0567.90063
  39. 39. M. J. D. POWELL, A Note of Quasi-Newton Formulae for Sparse Second Derivative Matrices, Math. Prog., 20, 1981, p. 144. Zbl0453.90081MR607402
  40. 40. R. N. S. RATHORE, K. A. VAN WORMER et G. J. POWELS, Synthesis Strategies for Multicomponent Separation Systems with Energy Integration, A.I.Ch.E.J., 20, 1974, p. 491. 
  41. 41. F. R. RODRIGO et J. D. SEADER, Synthesis of Separation Sequences by Ordered Branch Search, A.I.Ch.E. J., 21, 1975, p. 885. 
  42. 42. M. A. SAUNDERS, Large-Scale Linear Programming Using the Cholesky Factorization, Report STAN-CS-72-252, 1972. 
  43. 43. M. A. SAUNDERS, MINOS System Manual, Report SOL77-31, Stanford Univ., CA, 1977. 
  44. 44. M. A. SAUNDERS, MINOS Distribution Documentation, Report SOL 80-100, Stanford Univ., CA, 1980. 
  45. 45. L. K. SCHUBERT, Modification of a Quasi-Newton Method for Nonlinear Equations with a Sparse Jacobian, Math. Comp., 25, 1970, p, 27. Zbl0198.49402MR258276
  46. 46. M. A. STADTHEER, G. D. GARY et R. C. ALKIRE, Optimization of an Electrolytic Cell with the Use of a GRG Algorithm, Comp. and Chem. Eng., 7, 1983, p. 27. 
  47. 47. P. TOLLA, Amélioration de la stabilité numérique d'algorithmes de résolution de programmes linéaires à matrices de contraintes clairsemées, R.A.I.R.O., Rech.Op., 18, 1984, p.19. Zbl0576.90060MR737366
  48. 48. J. A. TOMLIN, Modifying Triangular Factors of the Basis in the Simplex method, in Sparse Matrices and their Applications, Plenum Press, 1972, p. 77. Zbl0288.90048MR331743
  49. 49. J. A. TOMLIN, On the Pricing and Backward Transformation in Linear Programming, Math. Prog., 6, 1974, p. 42. Zbl0278.90043MR337319
  50. 50. J. VIGNES, Implementation des méthodes d'optimisation : Test d'arrêt optimal, contrôle et précision de la solution, R.A.I.R.O., Rech. Op., 18, 1984, p. 1. Zbl0601.65052MR737365
  51. 51. P. WOLFE, Methods of Nonlinear Programming - the Reduced Gradient method, Recent Advances in Math. Progr., 67, 1963. Zbl0225.90042MR155683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.