Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions
Marie-Josée Jasor[1]; Laurent Lévi[2]
- [1] Université Blaise Pascal Laboratoire de Mathématiques Appliquées UMR 6620 CNRS 24 avenue des Landais 63117 Aubiere Cedex FRANCE
- [2] Université de Pau Laboratoire de Mathématiques Appliquées ERS 2055 CNRS BP 1155 64013 Pau Cedex FRANCE
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 2, page 269-296
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topJasor, Marie-Josée, and Lévi, Laurent. "Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions." Annales mathématiques Blaise Pascal 10.2 (2003): 269-296. <http://eudml.org/doc/10490>.
@article{Jasor2003,
abstract = {We establish a singular perturbation property for a class of quasilinear parabolic degenerate equations associated with a mixed Dirichlet-Neumann boundary condition in a bounded domain of $\mathbb\{R\}^p$, $1 \le p <+\infty $. In order to prove the $L^1$-convergence of viscous solutions toward the entropy solution of the corresponding first-order hyperbolic problem, we refer to some properties of bounded sequences in $L^\infty $ together with a weak formulation of boundary conditions for scalar conservation laws.},
affiliation = {Université Blaise Pascal Laboratoire de Mathématiques Appliquées UMR 6620 CNRS 24 avenue des Landais 63117 Aubiere Cedex FRANCE; Université de Pau Laboratoire de Mathématiques Appliquées ERS 2055 CNRS BP 1155 64013 Pau Cedex FRANCE},
author = {Jasor, Marie-Josée, Lévi, Laurent},
journal = {Annales mathématiques Blaise Pascal},
keywords = {existence and uniqueness theorem; first-order hyperbolic equation; entropy solution},
language = {eng},
month = {7},
number = {2},
pages = {269-296},
publisher = {Annales mathématiques Blaise Pascal},
title = {Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions},
url = {http://eudml.org/doc/10490},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Jasor, Marie-Josée
AU - Lévi, Laurent
TI - Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions
JO - Annales mathématiques Blaise Pascal
DA - 2003/7//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 2
SP - 269
EP - 296
AB - We establish a singular perturbation property for a class of quasilinear parabolic degenerate equations associated with a mixed Dirichlet-Neumann boundary condition in a bounded domain of $\mathbb{R}^p$, $1 \le p <+\infty $. In order to prove the $L^1$-convergence of viscous solutions toward the entropy solution of the corresponding first-order hyperbolic problem, we refer to some properties of bounded sequences in $L^\infty $ together with a weak formulation of boundary conditions for scalar conservation laws.
LA - eng
KW - existence and uniqueness theorem; first-order hyperbolic equation; entropy solution
UR - http://eudml.org/doc/10490
ER -
References
top- J.M. Ball, A Version of the Fundamental Theorem for Young Measures, PDEs and Continuum Model of Phase Transition (1995), 241-259, Springer-Verlag, Berlin Zbl0991.49500MR1036070
- A. Bamberger, Etude d’une équation doublement non linéaire, J. Func. Anal. 24 (1977), 148-155 Zbl0345.35059MR470490
- C. Bardos, A.Y. LeRoux, J.C. Nedelec, First-Order Quasilinear Equations with Boundary Conditions, Commun. in Partial Differential Equations 4 (1979), 1017-1034 Zbl0418.35024MR542510
- R. Burgers, H. Frid, K.H. Karlsen, On a Free Boundary Problem for a Strongly Degenerate Quasilinear Parabolic Equation with an Application to a Model of Pressure Filtration, Web Site Conservation Laws http://www.math.ntnu.no/conservation/ (2002)
- J. Carrillo, Entropy Solution for Nonlinear Degenerate Problems, Arch. Rat. Mech. Anal. 147 (1999), 269-361 Zbl0935.35056MR1709116
- G. Chavent, J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation, (1986), North Holland, Amsterdam Zbl0603.76101
- R. J. Diperna, Measure-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal. 88 (1985), 223-270 Zbl0616.35055MR775191
- R. Eymard, T. Gallouet, R. Herbin, Existence and Uniqueness of the Entropy Solution to a Nonlinear Hyperbolic Equation, Chin. Ann. of Math. 16B (1995), 1-14 Zbl0830.35077MR1338923
- R. Eymard, A. Michel, T Gallouet, R Herbin, Convergence of a Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations, Numer. Math. 92 (2002), 41-82 Zbl1005.65099MR1917365
- G. Gagneux, M. Madaune-Tort, Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, 22 (1996), Springer-Verlag, Berlin Zbl0842.35126MR1616513
- G. Gagneux, E. Rouvre, Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées, Ann. Fac. Sci. Toulouse X (2001), 163-183 Zbl1027.35062MR1928992
- M. J. Jasor, Behaviour of a Class of Nonlinear Diffusion-Convection Equations, Adv. in Math. Sci. and Appl. 5 (1995), 631-638 Zbl0844.35049MR1361008
- M. J. Jasor, Perturbations singulières de problèmes aux limites, non linéaires paraboliques dégénérés-hyperboliques, Ann. Fac. Sci. Toulouse VIII (1998), 267-291 Zbl0919.35013MR1656170
- S. N. Kruskov, First-Order Quasilinear Equations in Several Independent Variables, Math. USSR Sb. 10 (1970), 217-243 Zbl0215.16203
- L. Lévi, Singular Perturbations of Unilateral Problems Arising from the Theory of Flows through Porous Media, Adv. in Math. Sci. and Appl. 9 (1999), 597-620 Zbl0965.35099MR1725675
- L. Lévi, Strong Variational Formulations for Bilateral Obstacle Problems for Parabolic Degenerate Equations and Singular Perturbations Properties, (2001)
- M. Madaune-Tort, Un résultat de perturbations singulières pour des inéquations variationnelles dégénérées, Annali di Matematica pura et applicata IV (1982), 117-143 Zbl0523.35068MR681560
- J. Malek, J. Necas, M. Rokyta, M. Ruzicka, Weak and Measure-Valued Solutions to Evolutionary PDE’s, 4 (1996), Chapman and Hall Zbl0851.35002MR1409366
- C. Mascia, A. Porreta, A. Terracina, Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations, Arch. Rat. Mech. Anal. 163 (2002), 87-124 Zbl1027.35081MR1911095
- F. Mignot, J.P. Puel, Un résultat de perturbations singulières dans les inéquations variationnelles, Lecture Notes in Mathematics, Singular Perturbations and Boundary Layer Theory (1977), Springer-Verlag Zbl0446.35009MR463670
- L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (1979), KnopsR. J.R. J. Zbl0437.35004MR584398
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.