On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of ¯ -closed ( n , n - 1 ) -forms

Telemachos Hatziafratis[1]

  • [1] University of Athens Department of Mathematics Panepistemiopolis Athens 15784 GREECE

Annales mathématiques Blaise Pascal (2004)

  • Volume: 11, Issue: 1, page 41-46
  • ISSN: 1259-1734

Abstract

top
We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of ¯ -closed ( n , n - 1 ) -forms in the complement of a compact convex set in n .

How to cite

top

Hatziafratis, Telemachos. "On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms." Annales mathématiques Blaise Pascal 11.1 (2004): 41-46. <http://eudml.org/doc/10498>.

@article{Hatziafratis2004,
abstract = {We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of $\bar\{\partial \}$-closed $(n,n-1)$-forms in the complement of a compact convex set in $\mathbb\{C\}^n$.},
affiliation = {University of Athens Department of Mathematics Panepistemiopolis Athens 15784 GREECE},
author = {Hatziafratis, Telemachos},
journal = {Annales mathématiques Blaise Pascal},
keywords = {entire function; analytic functional},
language = {eng},
month = {1},
number = {1},
pages = {41-46},
publisher = {Annales mathématiques Blaise Pascal},
title = {On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar\{\partial \}$-closed $(n,n-1)$-forms},
url = {http://eudml.org/doc/10498},
volume = {11},
year = {2004},
}

TY - JOUR
AU - Hatziafratis, Telemachos
TI - On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms
JO - Annales mathématiques Blaise Pascal
DA - 2004/1//
PB - Annales mathématiques Blaise Pascal
VL - 11
IS - 1
SP - 41
EP - 46
AB - We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of $\bar{\partial }$-closed $(n,n-1)$-forms in the complement of a compact convex set in $\mathbb{C}^n$.
LA - eng
KW - entire function; analytic functional
UR - http://eudml.org/doc/10498
ER -

References

top
  1. B. Berndtsson, Weighted integral formulas, Several Complex Variables (1993), 160-187, Princeton Univ. Press Zbl0786.32003MR1207859
  2. T. Hatziafratis, Note on the Fourier-Laplace transform of ¯ -cohomology classes, Zeitschrift für Analysis und ihre Anwendungen 17 (1998), 907-915 Zbl0924.43004MR1669921

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.