# On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\overline{\partial}$-closed $(n,n-1)$-forms

Telemachos Hatziafratis^{[1]}

- [1] University of Athens Department of Mathematics Panepistemiopolis Athens 15784 GREECE

Annales mathématiques Blaise Pascal (2004)

- Volume: 11, Issue: 1, page 41-46
- ISSN: 1259-1734

## Access Full Article

top## Abstract

top## How to cite

topHatziafratis, Telemachos. "On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms." Annales mathématiques Blaise Pascal 11.1 (2004): 41-46. <http://eudml.org/doc/10498>.

@article{Hatziafratis2004,

abstract = {We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of $\bar\{\partial \}$-closed $(n,n-1)$-forms in the complement of a compact convex set in $\mathbb\{C\}^n$.},

affiliation = {University of Athens Department of Mathematics Panepistemiopolis Athens 15784 GREECE},

author = {Hatziafratis, Telemachos},

journal = {Annales mathématiques Blaise Pascal},

keywords = {entire function; analytic functional},

language = {eng},

month = {1},

number = {1},

pages = {41-46},

publisher = {Annales mathématiques Blaise Pascal},

title = {On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar\{\partial \}$-closed $(n,n-1)$-forms},

url = {http://eudml.org/doc/10498},

volume = {11},

year = {2004},

}

TY - JOUR

AU - Hatziafratis, Telemachos

TI - On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of $\bar{\partial }$-closed $(n,n-1)$-forms

JO - Annales mathématiques Blaise Pascal

DA - 2004/1//

PB - Annales mathématiques Blaise Pascal

VL - 11

IS - 1

SP - 41

EP - 46

AB - We give a proof of an integral formula of Berndtsson which is related to the inversion of Fourier-Laplace transforms of $\bar{\partial }$-closed $(n,n-1)$-forms in the complement of a compact convex set in $\mathbb{C}^n$.

LA - eng

KW - entire function; analytic functional

UR - http://eudml.org/doc/10498

ER -

## References

top- B. Berndtsson, Weighted integral formulas, Several Complex Variables (1993), 160-187, Princeton Univ. Press Zbl0786.32003MR1207859
- T. Hatziafratis, Note on the Fourier-Laplace transform of $\overline{\partial}$-cohomology classes, Zeitschrift für Analysis und ihre Anwendungen 17 (1998), 907-915 Zbl0924.43004MR1669921

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.