Calcul des idéaux d'un ordonné fini
RAIRO - Operations Research - Recherche Opérationnelle (1991)
- Volume: 25, Issue: 3, page 265-275
- ISSN: 0399-0559
Access Full Article
topHow to cite
topBordat, J.-P.. "Calcul des idéaux d'un ordonné fini." RAIRO - Operations Research - Recherche Opérationnelle 25.3 (1991): 265-275. <http://eudml.org/doc/105014>.
@article{Bordat1991,
author = {Bordat, J.-P.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {ideals of a finite poset; lattice structure},
language = {fre},
number = {3},
pages = {265-275},
publisher = {EDP-Sciences},
title = {Calcul des idéaux d'un ordonné fini},
url = {http://eudml.org/doc/105014},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Bordat, J.-P.
TI - Calcul des idéaux d'un ordonné fini
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 3
SP - 265
EP - 275
LA - fre
KW - ideals of a finite poset; lattice structure
UR - http://eudml.org/doc/105014
ER -
References
top- 1. J. P. BORDAT, Efficient Polynomial Algorithms for Distributive Lattices, accepté pour publication par Discrete Appl. Math. Zbl0733.06007MR1113538
- 2. V. BOUCHITTE et M. HABIB, The Calculation of Invariants for Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p. 231-279. Zbl1261.06002MR1037785
- 3. C. J. COLBOURN et W. R. PULLEYBLANK, Minimizing Setups in Ordered Sets with Fixed Width, Order, 1985, 1, p. 225-229. Zbl0557.06002MR779387
- 4. R. P. DILWORTH, A Decomposition Theorem for Partially Ordered Sets, Ann. of Math., 1950, 51, p. 161-166. Zbl0038.02003MR32578
- 5. G. GRATZER, General lattice Theory, Academic Press, 1978. Zbl0436.06001MR509213
- 6. E. L. LAWLER, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Rep. BW106/79, Stichting Matematisch Centrum, Amsterdam, 1979. Zbl0416.90036
- 7. E. L. LAWLER, J. K. LENSTRA et A. H. G. RINNOOY KHAN, Recent Developments in Deterministic Sequencing and Scheduling: A Survey, M. A. H. DEMPSTER et al., éd., Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, p. 35-73. Zbl0482.68035MR663575
- 8. R. H. MOHRING, Scheduling Problems with a Singular Solution, Discrete Appl. Math., 1982, 16, p.225-239. Zbl0489.90056MR686310
- 9. R. H. MOHRING, Computationally Tractable Classes of Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p.105-113. MR1037783
- 10. G. L. NEMHAUSER et L. E. TROTTER, Vertex Packings: Structural Properties and Algorithms, Math. Progr., 1975, 8, p. 232-248. Zbl0314.90059MR366738
- 11. J. C. PICARD et M. QUEYRANNE, Structure of All Minimum Cuts in a Network and Applications, Math. Progr. Study, 1980, 13, p. 8-16. Zbl0442.90093MR592081
- 12. W. POGUNTKE, Order-Theoretic Aspects of Scheduling, Combinatorics and Ordered sets (Arcata, Calif.), 1985, p. 1-32, Contemp. Math., 57, Amer. Math. Soc., Providence, R. I., 1986. Zbl0595.06002MR856231
- 13. J. S. PROVAN et M. O. BALL, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM J. Comput., 1983, 12, p. 777-788. Zbl0524.68041MR721012
- 14. L. SCHRAGEet K. R. BAKER, Dynamic Programming Solution for Sequencing Problems with Precedence Constraints. Oper. Res., 1978, 26, p. 444-449. Zbl0383.90054
- 15. G. STEINER, Single Machine Scheduling with Precedence Constraints of Dimension 2, Math. Oper. Res., 1984, 9, p.248-259. Zbl0541.90054MR742260
- 16. G. STEINER, An Algorithm to Generate the Ideals of a Partial Order, Oper. Res. Letters, 1986, 5, p.317-320. Zbl0608.90075MR875784
- 17. G. STEINER, On Computing the Information Theoretic Bound for Sorting: Counting the Linear Extensions of Posets; Res. Report n° 87459-OR, McMaster University, Hamilton, Ontario, Canada, 1987.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.