Calcul des idéaux d'un ordonné fini

J.-P. Bordat

RAIRO - Operations Research - Recherche Opérationnelle (1991)

  • Volume: 25, Issue: 3, page 265-275
  • ISSN: 0399-0559

How to cite

top

Bordat, J.-P.. "Calcul des idéaux d'un ordonné fini." RAIRO - Operations Research - Recherche Opérationnelle 25.3 (1991): 265-275. <http://eudml.org/doc/105014>.

@article{Bordat1991,
author = {Bordat, J.-P.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {ideals of a finite poset; lattice structure},
language = {fre},
number = {3},
pages = {265-275},
publisher = {EDP-Sciences},
title = {Calcul des idéaux d'un ordonné fini},
url = {http://eudml.org/doc/105014},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Bordat, J.-P.
TI - Calcul des idéaux d'un ordonné fini
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 3
SP - 265
EP - 275
LA - fre
KW - ideals of a finite poset; lattice structure
UR - http://eudml.org/doc/105014
ER -

References

top
  1. 1. J. P. BORDAT, Efficient Polynomial Algorithms for Distributive Lattices, accepté pour publication par Discrete Appl. Math. Zbl0733.06007MR1113538
  2. 2. V. BOUCHITTE et M. HABIB, The Calculation of Invariants for Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p. 231-279. Zbl1261.06002MR1037785
  3. 3. C. J. COLBOURN et W. R. PULLEYBLANK, Minimizing Setups in Ordered Sets with Fixed Width, Order, 1985, 1, p. 225-229. Zbl0557.06002MR779387
  4. 4. R. P. DILWORTH, A Decomposition Theorem for Partially Ordered Sets, Ann. of Math., 1950, 51, p. 161-166. Zbl0038.02003MR32578
  5. 5. G. GRATZER, General lattice Theory, Academic Press, 1978. Zbl0436.06001MR509213
  6. 6. E. L. LAWLER, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Rep. BW106/79, Stichting Matematisch Centrum, Amsterdam, 1979. Zbl0416.90036
  7. 7. E. L. LAWLER, J. K. LENSTRA et A. H. G. RINNOOY KHAN, Recent Developments in Deterministic Sequencing and Scheduling: A Survey, M. A. H. DEMPSTER et al., éd., Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, p. 35-73. Zbl0482.68035MR663575
  8. 8. R. H. MOHRING, Scheduling Problems with a Singular Solution, Discrete Appl. Math., 1982, 16, p.225-239. Zbl0489.90056MR686310
  9. 9. R. H. MOHRING, Computationally Tractable Classes of Ordered Sets, Algorithms and Order, I. RIVAL éd., Kluwer Acad. Publ., Dordrecht, 1989, p.105-113. MR1037783
  10. 10. G. L. NEMHAUSER et L. E. TROTTER, Vertex Packings: Structural Properties and Algorithms, Math. Progr., 1975, 8, p. 232-248. Zbl0314.90059MR366738
  11. 11. J. C. PICARD et M. QUEYRANNE, Structure of All Minimum Cuts in a Network and Applications, Math. Progr. Study, 1980, 13, p. 8-16. Zbl0442.90093MR592081
  12. 12. W. POGUNTKE, Order-Theoretic Aspects of Scheduling, Combinatorics and Ordered sets (Arcata, Calif.), 1985, p. 1-32, Contemp. Math., 57, Amer. Math. Soc., Providence, R. I., 1986. Zbl0595.06002MR856231
  13. 13. J. S. PROVAN et M. O. BALL, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM J. Comput., 1983, 12, p. 777-788. Zbl0524.68041MR721012
  14. 14. L. SCHRAGEet K. R. BAKER, Dynamic Programming Solution for Sequencing Problems with Precedence Constraints. Oper. Res., 1978, 26, p. 444-449. Zbl0383.90054
  15. 15. G. STEINER, Single Machine Scheduling with Precedence Constraints of Dimension 2, Math. Oper. Res., 1984, 9, p.248-259. Zbl0541.90054MR742260
  16. 16. G. STEINER, An Algorithm to Generate the Ideals of a Partial Order, Oper. Res. Letters, 1986, 5, p.317-320. Zbl0608.90075MR875784
  17. 17. G. STEINER, On Computing the Information Theoretic Bound for Sorting: Counting the Linear Extensions of Posets; Res. Report n° 87459-OR, McMaster University, Hamilton, Ontario, Canada, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.