Inf-convolution quasi-convexe des fonctionnelles positives

Abdelkader Elqortobi

RAIRO - Operations Research - Recherche Opérationnelle (1992)

  • Volume: 26, Issue: 4, page 301-311
  • ISSN: 0399-0559

How to cite

top

Elqortobi, Abdelkader. "Inf-convolution quasi-convexe des fonctionnelles positives." RAIRO - Operations Research - Recherche Opérationnelle 26.4 (1992): 301-311. <http://eudml.org/doc/105042>.

@article{Elqortobi1992,
author = {Elqortobi, Abdelkader},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {quasiconvexity; surrogate duality; infimal convolution; convex analysis; quasiconvex infimal convolution; quasi-tangential},
language = {fre},
number = {4},
pages = {301-311},
publisher = {EDP-Sciences},
title = {Inf-convolution quasi-convexe des fonctionnelles positives},
url = {http://eudml.org/doc/105042},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Elqortobi, Abdelkader
TI - Inf-convolution quasi-convexe des fonctionnelles positives
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1992
PB - EDP-Sciences
VL - 26
IS - 4
SP - 301
EP - 311
LA - fre
KW - quasiconvexity; surrogate duality; infimal convolution; convex analysis; quasiconvex infimal convolution; quasi-tangential
UR - http://eudml.org/doc/105042
ER -

References

top
  1. 1. M. ATTEIA et A. ELQORTOBI, Quasi-Convex Duality Lectures Notes in Control and Inform. Sci., 1980, 30, p. 3-8. Zbl0482.90075MR618468
  2. 2. N. BOURBAKI, Espaces Vectoriels topologiques, Hermann, Paris, Zbl0042.35302
  3. 3. J. P. CROUZEIX, Contributions à l'étude des fonctions quasiconvexes, Thèse de Doctorat d'État, série E, n° d'ordre 250, 1977. Université de Clermont-Ferrand (France). MR484417
  4. 4. M. J. GREENBERG et W. P. PIERSKALLA, Quasi-Conjugate Functions and Surrogate Duality, Cahiers Centre Études Rech. Opér., 1973, 75, p. 437-448. Zbl0276.90051MR366402
  5. 5. P. J. LAURENT, Approximation et Optimisation, Hermann, Paris, 1972. Zbl0238.90058MR467080
  6. 6. J. E. MARTINEZ-LEGAZ, Quasiconvex Duality Theory by Generalized Conjugation Methods, Optimization, 1988, 19, p. 603-652. Zbl0671.49015MR960433
  7. 7. J. J. MOREAU, Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl., 1970, 49, p. 109-154. Zbl0195.49502MR288602
  8. 8. U. PASSY et E. Z. PRISMAN, Conjugacy in quasiconvex programming, Math. Programming, 1984, 30, p.121-146. Zbl0547.49008MR758000
  9. 9. J. P. PENOT et M. VOLLE, On Quasi-convex Duality, Math. Oper. Res., 1990, 15, p. 597-625. Zbl0717.90058MR1080468
  10. 10. R. T. ROCKAFELLAR, Convex Analysis, Princeton, 1970. Zbl0932.90001MR274683
  11. 11. I. SINGER, Conjugate Functionals and Level Sets, Nonlinear Anal. Theory, Methods Appl., 1984, 8, p.313-320. Zbl0538.49005MR739662
  12. 12. M. VOLLE, Conjugaison par tranches, Ann. Mat. Pura Appl. (IV), 1985, 139, p. 279-312. Zbl0581.49007MR798177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.