On a convolution operation obtained by adding level sets : classical and new results

A. Seeger; M. Volle

RAIRO - Operations Research - Recherche Opérationnelle (1995)

  • Volume: 29, Issue: 2, page 131-154
  • ISSN: 0399-0559

How to cite


Seeger, A., and Volle, M.. "On a convolution operation obtained by adding level sets : classical and new results." RAIRO - Operations Research - Recherche Opérationnelle 29.2 (1995): 131-154. <http://eudml.org/doc/105101>.

author = {Seeger, A., Volle, M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {level sum; Lipschitzian approximation; Fenchel conjugate; subdifferential; convolution},
language = {eng},
number = {2},
pages = {131-154},
publisher = {EDP-Sciences},
title = {On a convolution operation obtained by adding level sets : classical and new results},
url = {http://eudml.org/doc/105101},
volume = {29},
year = {1995},

AU - Seeger, A.
AU - Volle, M.
TI - On a convolution operation obtained by adding level sets : classical and new results
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 2
SP - 131
EP - 154
LA - eng
KW - level sum; Lipschitzian approximation; Fenchel conjugate; subdifferential; convolution
UR - http://eudml.org/doc/105101
ER -


  1. 1. S. ABDULFATTAH, M. SOUEYCATT, Analyse epi/hypo-graphique, Séminaire d'Analyse Convexe, Montpellier, Exposé n° 13, 1991. Zbl0893.49015MR1154513
  2. 2. H. ATTOUCH, Variational convergence for functions and operators, Pitman, London, 1984. Zbl0561.49012MR773850
  3. 3. H. ATTOUCH, Analyse épigraphique, Notes de cours de D.E.A., Montpellier, 1990. 
  4. 4. J. BORWEIN, A note on ε-subgradients and maximal monotonicity, Pacific J. Math., 1982, 103, pp. 307-314. Zbl0525.49010MR705231
  5. 5. N. BOURBAKI, Espaces vectoriels topologiques, Chap. III, IV and V, Hermann, Paris, 1955. Zbl0066.35301
  6. 6. A. BRONDSTED, R. T. ROCKAFELLAR, On the subdifferentiability of convex functions, Proceedings AMS, 16, 1965, pp. 605-611. Zbl0141.11801MR178103
  7. 8. V. F. DEM'YANOV, L. V. VASIL'EV, Nondifferentiable optimization, Translation Series in Mathematics and Engineering, Optimization Software, Inc., New York, 1985. Zbl0973.49500MR816531
  8. 8. D. DUBOIS, H. PRADE, Operations on fuzzy numbers, Int J. Systems Sci., 1978, 9, pp. 613-626. Zbl0383.94045MR491199
  9. 9. A. ELQORTOBI, Inf-convolution quasi-convexe des fonctionnelles positives, Recherche Opérationnelle, 1992, 26, pp. 301-311. Zbl0783.49008MR1196903
  10. 10. M. FEDRIZZI, Introduction to fuzzy sets and possibility theory, In Optimization models using fuzzy sets and possibility theory, J. KACPRZYK and S. A. ORLOVSKI (Eds.), Reidel Publishing Co., pp. 13-26. Zbl0643.94046MR917505
  11. 11. A. HASSOUNI, Sous-différentiels de fonctions quasi-convexes, Thèse de 3e cycle, Université Paul Sabatier, Toulouse, 1983. 
  12. 12. N. HEUKEMES, V. H. NGUYEN, J.-J. STRODIOT, ε-optimal solutions in nondifferentiable programming and some related questions, Math. Programming, 1983, 25, pp. 307-365. Zbl0495.90067MR689660
  13. 13. J.-B. HIRIART-URRUTY, A. SEEGER, The second-order subdifferential and the Dupin indicatrices of a nondifferentiable convex function, Proc. Math. Soc., 1989, 58, pp. 351-365. Zbl0632.53009MR977481
  14. 14. M. KOLONKO, Optimal compactification of a floorplan and its relation to other optimization problems-A dynamic programming approach, ZOR-Meth. Oper. Res., 1993, 7, pp. 75-95. Zbl0768.90081MR1213679
  15. 15. A.G. KUSRAEV, S. S. KUTATELADZE, Subdifferential calculus, Nauka Publishing House, Novosibirsk, 1987 (in Russian). Zbl1137.49002
  16. 16. C. LEMARECHAL, J. ZOWE, Some remarks on the construction of higher-order algorithms in convex optimization, Applied Mathematics and Optimization, 1983, 10, pp. 51-68. Zbl0527.65042MR701900
  17. 17. J. E. MARTINEZ-LEGAZ, On lower subdifferentiable functions. In Trends in Mathematical Optimization, K. H. HOFFMANN, J. B. HIRIART-URRUTY, C. LEMARECHAL, J. ZOWE, Eds., International Series of Numerical Mathematics, 84, Birkhàuser-Verlag, Basel, 1988, pp. 197-232. Zbl0643.49015MR1017954
  18. 18. W. OETTLI, Epsilon-solutions and epsilon-supports, Optimization, 1985, 16, pp. 491-496. Zbl0577.90060MR791360
  19. 19. G. PASSTY, The parallel sum of non-linear monotone operators, Nonlinear Analysis TMA, 1986, 10, pp. 215-227. Zbl0628.47033MR834503
  20. 20. J.-P. PENOT, M. VOLLE, On strongly convex and paraconvex dualities, In Lecture Notes in Economies and Mathematical Systems, Springer-Verlag, 1990, 345, pp. 198-218. Zbl0701.49038MR1117933
  21. 21. R. T. ROCKAFELLAR, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1970. Zbl0932.90001
  22. 22. R. T. ROCKAFELLAR, Conjugate duality and optimization, In Regional Conference Series in Applied Mathematics, 1973, 16, SIAM Publications. Zbl0296.90036MR373611
  23. 23. A. SEEGER, Analyse du second ordre de problèmes non différentiables, Thèse, Université Paul Sabatier, Toulouse, 1986. 
  24. 24. A. SEEGER, Direct and inverse addition in convex analysis and applications, J. Math. Anal and Appl., 1990, 148, pp. 317-349. Zbl0714.46009MR1052347
  25. 25. A. SEEGER, Limiting behaviour of the approximate second-order subdifferential of a convex function, J. Optim. Th. Appl., 1992, 74, pp. 527-544. Zbl0792.49015MR1181850
  26. 26. M. SION, On general minimax theorems, Pacifics J. Math., 1958, 8, pp. 171-176. Zbl0081.11502MR97026
  27. 27. M. VALADIER, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes, C. R. Acad. Sci. Paris, Série A, 1969, 268, pp. 39-42. Zbl0164.43302MR241975
  28. 28. M. VOLLE, Convergence en niveaux et en épigraphes, C R. Acad. Sci.Paris, Série I, 1984, 299, pp. 295-298. Zbl0566.49004MR761250
  29. 29. M. VOLLE, Quelques résultats relatifs à l'approche par les tranches de l'épi-convergence, Contributions à la dualité en optimisation et à l'épi-convergence, Thèse d'état, Université de Pau, 1986. 
  30. 30. M. VOLLE, Approximations quasi-infconvolutives, Publication du Département de Mathématiques de l'Université de Limoges, 1986. 
  31. 31. C. ZALINESCU, Programare metematiča în spatii normate infinit dimensionale (In Roumain), manuscript in preparation. 
  32. 32. J. ZOWE, Nondifferentiable optimization - A motivation and a short introduction into the subgradient and the bundie concept, Computational Mathematical Programming, K. SCHITTKOWSKI, Ed., Springer-Verlag, Berlin, 1985. Zbl0581.90072MR820049

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.