On a convolution operation obtained by adding level sets : classical and new results
RAIRO - Operations Research - Recherche Opérationnelle (1995)
- Volume: 29, Issue: 2, page 131-154
- ISSN: 0399-0559
Access Full Article
topHow to cite
topSeeger, A., and Volle, M.. "On a convolution operation obtained by adding level sets : classical and new results." RAIRO - Operations Research - Recherche Opérationnelle 29.2 (1995): 131-154. <http://eudml.org/doc/105101>.
@article{Seeger1995,
author = {Seeger, A., Volle, M.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {level sum; Lipschitzian approximation; Fenchel conjugate; subdifferential; convolution},
language = {eng},
number = {2},
pages = {131-154},
publisher = {EDP-Sciences},
title = {On a convolution operation obtained by adding level sets : classical and new results},
url = {http://eudml.org/doc/105101},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Seeger, A.
AU - Volle, M.
TI - On a convolution operation obtained by adding level sets : classical and new results
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1995
PB - EDP-Sciences
VL - 29
IS - 2
SP - 131
EP - 154
LA - eng
KW - level sum; Lipschitzian approximation; Fenchel conjugate; subdifferential; convolution
UR - http://eudml.org/doc/105101
ER -
References
top- 1. S. ABDULFATTAH, M. SOUEYCATT, Analyse epi/hypo-graphique, Séminaire d'Analyse Convexe, Montpellier, Exposé n° 13, 1991. Zbl0893.49015MR1154513
- 2. H. ATTOUCH, Variational convergence for functions and operators, Pitman, London, 1984. Zbl0561.49012MR773850
- 3. H. ATTOUCH, Analyse épigraphique, Notes de cours de D.E.A., Montpellier, 1990.
- 4. J. BORWEIN, A note on ε-subgradients and maximal monotonicity, Pacific J. Math., 1982, 103, pp. 307-314. Zbl0525.49010MR705231
- 5. N. BOURBAKI, Espaces vectoriels topologiques, Chap. III, IV and V, Hermann, Paris, 1955. Zbl0066.35301
- 6. A. BRONDSTED, R. T. ROCKAFELLAR, On the subdifferentiability of convex functions, Proceedings AMS, 16, 1965, pp. 605-611. Zbl0141.11801MR178103
- 8. V. F. DEM'YANOV, L. V. VASIL'EV, Nondifferentiable optimization, Translation Series in Mathematics and Engineering, Optimization Software, Inc., New York, 1985. Zbl0973.49500MR816531
- 8. D. DUBOIS, H. PRADE, Operations on fuzzy numbers, Int J. Systems Sci., 1978, 9, pp. 613-626. Zbl0383.94045MR491199
- 9. A. ELQORTOBI, Inf-convolution quasi-convexe des fonctionnelles positives, Recherche Opérationnelle, 1992, 26, pp. 301-311. Zbl0783.49008MR1196903
- 10. M. FEDRIZZI, Introduction to fuzzy sets and possibility theory, In Optimization models using fuzzy sets and possibility theory, J. KACPRZYK and S. A. ORLOVSKI (Eds.), Reidel Publishing Co., pp. 13-26. Zbl0643.94046MR917505
- 11. A. HASSOUNI, Sous-différentiels de fonctions quasi-convexes, Thèse de 3e cycle, Université Paul Sabatier, Toulouse, 1983.
- 12. N. HEUKEMES, V. H. NGUYEN, J.-J. STRODIOT, ε-optimal solutions in nondifferentiable programming and some related questions, Math. Programming, 1983, 25, pp. 307-365. Zbl0495.90067MR689660
- 13. J.-B. HIRIART-URRUTY, A. SEEGER, The second-order subdifferential and the Dupin indicatrices of a nondifferentiable convex function, Proc. Math. Soc., 1989, 58, pp. 351-365. Zbl0632.53009MR977481
- 14. M. KOLONKO, Optimal compactification of a floorplan and its relation to other optimization problems-A dynamic programming approach, ZOR-Meth. Oper. Res., 1993, 7, pp. 75-95. Zbl0768.90081MR1213679
- 15. A.G. KUSRAEV, S. S. KUTATELADZE, Subdifferential calculus, Nauka Publishing House, Novosibirsk, 1987 (in Russian). Zbl1137.49002
- 16. C. LEMARECHAL, J. ZOWE, Some remarks on the construction of higher-order algorithms in convex optimization, Applied Mathematics and Optimization, 1983, 10, pp. 51-68. Zbl0527.65042MR701900
- 17. J. E. MARTINEZ-LEGAZ, On lower subdifferentiable functions. In Trends in Mathematical Optimization, K. H. HOFFMANN, J. B. HIRIART-URRUTY, C. LEMARECHAL, J. ZOWE, Eds., International Series of Numerical Mathematics, 84, Birkhàuser-Verlag, Basel, 1988, pp. 197-232. Zbl0643.49015MR1017954
- 18. W. OETTLI, Epsilon-solutions and epsilon-supports, Optimization, 1985, 16, pp. 491-496. Zbl0577.90060MR791360
- 19. G. PASSTY, The parallel sum of non-linear monotone operators, Nonlinear Analysis TMA, 1986, 10, pp. 215-227. Zbl0628.47033MR834503
- 20. J.-P. PENOT, M. VOLLE, On strongly convex and paraconvex dualities, In Lecture Notes in Economies and Mathematical Systems, Springer-Verlag, 1990, 345, pp. 198-218. Zbl0701.49038MR1117933
- 21. R. T. ROCKAFELLAR, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1970. Zbl0932.90001
- 22. R. T. ROCKAFELLAR, Conjugate duality and optimization, In Regional Conference Series in Applied Mathematics, 1973, 16, SIAM Publications. Zbl0296.90036MR373611
- 23. A. SEEGER, Analyse du second ordre de problèmes non différentiables, Thèse, Université Paul Sabatier, Toulouse, 1986.
- 24. A. SEEGER, Direct and inverse addition in convex analysis and applications, J. Math. Anal and Appl., 1990, 148, pp. 317-349. Zbl0714.46009MR1052347
- 25. A. SEEGER, Limiting behaviour of the approximate second-order subdifferential of a convex function, J. Optim. Th. Appl., 1992, 74, pp. 527-544. Zbl0792.49015MR1181850
- 26. M. SION, On general minimax theorems, Pacifics J. Math., 1958, 8, pp. 171-176. Zbl0081.11502MR97026
- 27. M. VALADIER, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes, C. R. Acad. Sci. Paris, Série A, 1969, 268, pp. 39-42. Zbl0164.43302MR241975
- 28. M. VOLLE, Convergence en niveaux et en épigraphes, C R. Acad. Sci.Paris, Série I, 1984, 299, pp. 295-298. Zbl0566.49004MR761250
- 29. M. VOLLE, Quelques résultats relatifs à l'approche par les tranches de l'épi-convergence, Contributions à la dualité en optimisation et à l'épi-convergence, Thèse d'état, Université de Pau, 1986.
- 30. M. VOLLE, Approximations quasi-infconvolutives, Publication du Département de Mathématiques de l'Université de Limoges, 1986.
- 31. C. ZALINESCU, Programare metematiča în spatii normate infinit dimensionale (In Roumain), manuscript in preparation.
- 32. J. ZOWE, Nondifferentiable optimization - A motivation and a short introduction into the subgradient and the bundie concept, Computational Mathematical Programming, K. SCHITTKOWSKI, Ed., Springer-Verlag, Berlin, 1985. Zbl0581.90072MR820049
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.