A maximal function on harmonic extensions of H -type groups

Maria Vallarino[1]

  • [1] Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi, 53 20125 Milano ITALY

Annales mathématiques Blaise Pascal (2006)

  • Volume: 13, Issue: 1, page 87-101
  • ISSN: 1259-1734

Abstract

top
Let N be an H -type group and S N × + be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator M ρ on S , obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family of neighbourhoods of the identity. We prove that the maximal operator M ρ is of weak type ( 1 , 1 ) .

How to cite

top

Vallarino, Maria. "A maximal function on harmonic extensions of $H$-type groups." Annales mathématiques Blaise Pascal 13.1 (2006): 87-101. <http://eudml.org/doc/10530>.

@article{Vallarino2006,
abstract = {Let $N$ be an $H$-type group and $S\simeq N\times \mathbb\{R\}^+$ be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator $M^\{\mathcal\{R\}\}_\{\rho \}$ on $S$, obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family $\mathcal\{R\}$ of neighbourhoods of the identity. We prove that the maximal operator $M^\{\mathcal\{R\}\}_\{\rho \}$ is of weak type $(1,1)$.},
affiliation = {Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi, 53 20125 Milano ITALY},
author = {Vallarino, Maria},
journal = {Annales mathématiques Blaise Pascal},
keywords = {-type group; maximal function; weak type estimate},
language = {eng},
month = {1},
number = {1},
pages = {87-101},
publisher = {Annales mathématiques Blaise Pascal},
title = {A maximal function on harmonic extensions of $H$-type groups},
url = {http://eudml.org/doc/10530},
volume = {13},
year = {2006},
}

TY - JOUR
AU - Vallarino, Maria
TI - A maximal function on harmonic extensions of $H$-type groups
JO - Annales mathématiques Blaise Pascal
DA - 2006/1//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 1
SP - 87
EP - 101
AB - Let $N$ be an $H$-type group and $S\simeq N\times \mathbb{R}^+$ be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator $M^{\mathcal{R}}_{\rho }$ on $S$, obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family $\mathcal{R}$ of neighbourhoods of the identity. We prove that the maximal operator $M^{\mathcal{R}}_{\rho }$ is of weak type $(1,1)$.
LA - eng
KW - -type group; maximal function; weak type estimate
UR - http://eudml.org/doc/10530
ER -

References

top
  1. F. Astengo, Multipliers for a distinguished Laplacian on solvable extensions of H -type groups, Monatsh. Math. 120 (1995), 179-188 Zbl0865.43004MR1363136
  2. M. Cowling, A.H. Dooley, A. Korányi, F. Ricci, H -type groups and Iwasawa decompositions, Adv. Math 87 (1991), 1-41 Zbl0761.22010MR1102963
  3. M. Cowling, A.H. Dooley, A. Korányi, F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal. 8 (1998), 199-237 Zbl0966.53039MR1705176
  4. M. Cowling, S. Giulini, A. Hulanicki, G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math. 111 (1994), 103-121 Zbl0820.43001MR1301761
  5. E. Damek, Curvature of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math. 53 (1987), 255-268 Zbl0661.53033MR924070
  6. E. Damek, Geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math. 53 (1987), 249-253 Zbl0661.53034MR924069
  7. E. Damek, F. Ricci, A class of nonsymmetric harmonic riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 139-142 Zbl0755.53032MR1142682
  8. E. Damek, F. Ricci, Harmonic analysis on solvable extensions of H -type groups, J. Geom. Anal. 2 (1992), 213-248 Zbl0788.43008MR1164603
  9. G.B. Folland, E.M. Stein, Hardy spaces on homogeneous groups, (1982), Princeton University Press, Princeton Zbl0508.42025MR657581
  10. G. Gaudry, S. Giulini, A.M. Mantero, Asymmetry of maximal functions on the affine group of the line, Tohoku Math. J. 42 (1990), 195-203 Zbl0722.43008MR1053948
  11. S. Giulini, Maximal functions on the group of affine transformations of 2 , Quaderno Dip. Mat. “F. Enriques”, Milano 1 (1987) 
  12. S. Giulini, G. Mauceri, Analysis of a distinguished Laplacian on solvable Lie groups, Math. Nachr. 163 (1993), 151-162 Zbl0801.43002MR1235064
  13. S. Giulini, P. Sjögren, A note on maximal functions on a solvable Lie group, Arch. Math. (Basel) 55 (1990), 156-160 Zbl0693.42020MR1064383
  14. W. Hebisch, T. Steger, Multipliers and singular integrals on exponential growth groups, Math. Z. 245 (2003), 37-61 Zbl1035.43001MR2023952
  15. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1975), 145-159 Zbl0393.35015MR554324
  16. M. Vallarino, Spectral multipliers on harmonic extensions of H -type groups, (2005) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.