A maximal function on harmonic extensions of -type groups
- [1] Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi, 53 20125 Milano ITALY
Annales mathématiques Blaise Pascal (2006)
- Volume: 13, Issue: 1, page 87-101
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topVallarino, Maria. "A maximal function on harmonic extensions of $H$-type groups." Annales mathématiques Blaise Pascal 13.1 (2006): 87-101. <http://eudml.org/doc/10530>.
@article{Vallarino2006,
abstract = {Let $N$ be an $H$-type group and $S\simeq N\times \mathbb\{R\}^+$ be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator $M^\{\mathcal\{R\}\}_\{\rho \}$ on $S$, obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family $\mathcal\{R\}$ of neighbourhoods of the identity. We prove that the maximal operator $M^\{\mathcal\{R\}\}_\{\rho \}$ is of weak type $(1,1)$.},
affiliation = {Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi, 53 20125 Milano ITALY},
author = {Vallarino, Maria},
journal = {Annales mathématiques Blaise Pascal},
keywords = {-type group; maximal function; weak type estimate},
language = {eng},
month = {1},
number = {1},
pages = {87-101},
publisher = {Annales mathématiques Blaise Pascal},
title = {A maximal function on harmonic extensions of $H$-type groups},
url = {http://eudml.org/doc/10530},
volume = {13},
year = {2006},
}
TY - JOUR
AU - Vallarino, Maria
TI - A maximal function on harmonic extensions of $H$-type groups
JO - Annales mathématiques Blaise Pascal
DA - 2006/1//
PB - Annales mathématiques Blaise Pascal
VL - 13
IS - 1
SP - 87
EP - 101
AB - Let $N$ be an $H$-type group and $S\simeq N\times \mathbb{R}^+$ be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator $M^{\mathcal{R}}_{\rho }$ on $S$, obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family $\mathcal{R}$ of neighbourhoods of the identity. We prove that the maximal operator $M^{\mathcal{R}}_{\rho }$ is of weak type $(1,1)$.
LA - eng
KW - -type group; maximal function; weak type estimate
UR - http://eudml.org/doc/10530
ER -
References
top- F. Astengo, Multipliers for a distinguished Laplacian on solvable extensions of -type groups, Monatsh. Math. 120 (1995), 179-188 Zbl0865.43004MR1363136
- M. Cowling, A.H. Dooley, A. Korányi, F. Ricci, -type groups and Iwasawa decompositions, Adv. Math 87 (1991), 1-41 Zbl0761.22010MR1102963
- M. Cowling, A.H. Dooley, A. Korányi, F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal. 8 (1998), 199-237 Zbl0966.53039MR1705176
- M. Cowling, S. Giulini, A. Hulanicki, G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math. 111 (1994), 103-121 Zbl0820.43001MR1301761
- E. Damek, Curvature of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math. 53 (1987), 255-268 Zbl0661.53033MR924070
- E. Damek, Geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math. 53 (1987), 249-253 Zbl0661.53034MR924069
- E. Damek, F. Ricci, A class of nonsymmetric harmonic riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 139-142 Zbl0755.53032MR1142682
- E. Damek, F. Ricci, Harmonic analysis on solvable extensions of -type groups, J. Geom. Anal. 2 (1992), 213-248 Zbl0788.43008MR1164603
- G.B. Folland, E.M. Stein, Hardy spaces on homogeneous groups, (1982), Princeton University Press, Princeton Zbl0508.42025MR657581
- G. Gaudry, S. Giulini, A.M. Mantero, Asymmetry of maximal functions on the affine group of the line, Tohoku Math. J. 42 (1990), 195-203 Zbl0722.43008MR1053948
- S. Giulini, Maximal functions on the group of affine transformations of , Quaderno Dip. Mat. “F. Enriques”, Milano 1 (1987)
- S. Giulini, G. Mauceri, Analysis of a distinguished Laplacian on solvable Lie groups, Math. Nachr. 163 (1993), 151-162 Zbl0801.43002MR1235064
- S. Giulini, P. Sjögren, A note on maximal functions on a solvable Lie group, Arch. Math. (Basel) 55 (1990), 156-160 Zbl0693.42020MR1064383
- W. Hebisch, T. Steger, Multipliers and singular integrals on exponential growth groups, Math. Z. 245 (2003), 37-61 Zbl1035.43001MR2023952
- A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1975), 145-159 Zbl0393.35015MR554324
- M. Vallarino, Spectral multipliers on harmonic extensions of -type groups, (2005)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.