The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A maximal function on harmonic extensions of H -type groups”

A.e. convergence of spectral sums on Lie groups

Christopher Meaney, Detlef Müller, Elena Prestini (2007)

Annales de l’institut Fourier

Similarity:

Let be a right-invariant sub-Laplacian on a connected Lie group G , and let S R f : = 0 R d E λ f , R 0 , denote the associated “spherical partial sums,” where = 0 λ d E λ is the spectral resolution of . We prove that S R f ( x ) converges a.e. to f ( x ) as R under the assumption log ( 2 + ) f L 2 ( G ) .

Approximation of values of hypergeometric functions by restricted rationals

Carsten Elsner, Takao Komatsu, Iekata Shiokawa (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We compute upper and lower bounds for the approximation of hyperbolic functions at points 1 / s ( s = 1 , 2 , ) by rationals x / y , such that x , y satisfy a quadratic equation. For instance, all positive integers x , y with y 0 ( mod 2 ) solving the Pythagorean equation x 2 + y 2 = z 2 satisfy | y sinh ( 1 / s ) - x | log log y log y . Conversely, for every s = 1 , 2 , there are infinitely many coprime integers x , y , such that | y sinh ( 1 / s ) - x | log log y log y and x 2 + y 2 = z 2 hold simultaneously for some integer z . A generalization to the approximation of h ( e 1 / s ) for rational...

Necessary condition for measures which are ( L q , L p ) multipliers

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2009)

Annales mathématiques Blaise Pascal

Similarity:

Let G be a locally compact group and ρ the left Haar measure on G . Given a non-negative Radon measure μ , we establish a necessary condition on the pairs q , p for which μ is a multiplier from L q G , ρ to L p G , ρ . Applied to n , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7]. When G ...

On Kelvin type transformation for Weinstein operator

Martina Šimůnková (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator W k : = Δ + k x n x n on n is proved. In this note there is shown that in the cases k 0 , k 2 no other transforms of this kind exist and for case k = 2 , all such transforms are described.