Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth
Michael Cowling; Saverio Giulini; Andrzej Hulanicki; Giancarlo Mauceri
Studia Mathematica (1994)
- Volume: 111, Issue: 2, page 103-121
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCowling, Michael, et al. "Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth." Studia Mathematica 111.2 (1994): 103-121. <http://eudml.org/doc/216123>.
@article{Cowling1994,
abstract = {We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for $L^1(AN),$ but also for $L^p(AN)$, where 1 < p < ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.},
author = {Cowling, Michael, Giulini, Saverio, Hulanicki, Andrzej, Mauceri, Giancarlo},
journal = {Studia Mathematica},
keywords = { groups; semisimple Lie groups; spectral multipliers; stratified groups},
language = {eng},
number = {2},
pages = {103-121},
title = {Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth},
url = {http://eudml.org/doc/216123},
volume = {111},
year = {1994},
}
TY - JOUR
AU - Cowling, Michael
AU - Giulini, Saverio
AU - Hulanicki, Andrzej
AU - Mauceri, Giancarlo
TI - Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth
JO - Studia Mathematica
PY - 1994
VL - 111
IS - 2
SP - 103
EP - 121
AB - We prove that on Iwasawa AN groups coming from arbitrary semisimple Lie groups there is a Laplacian with a nonholomorphic functional calculus, not only for $L^1(AN),$ but also for $L^p(AN)$, where 1 < p < ∞. This yields a spectral multiplier theorem analogous to the ones known for sublaplacians on stratified groups.
LA - eng
KW - groups; semisimple Lie groups; spectral multipliers; stratified groups
UR - http://eudml.org/doc/216123
ER -
References
top- [1] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, preprint. Zbl0794.43003
- [2] J. Ph. Anker, Fourier multipliers on Riemannian symmetric spaces of the non-compact type, Ann. of Math. 132 (1990), 597-628. Zbl0741.43009
- [3] J. Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297. Zbl0764.43005
- [4] J. Ph. Anker, A short proof of a classical covering lemma, Monatsh. Math. 107 (1989), 5-7. Zbl0671.22001
- [5] J. Ph. Anker et N. Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), 1303-1354. Zbl0616.43009
- [6] A. Bonami et J.-L. Clerc, Sommes de Cesàro et multiplicateurs de développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. Zbl0278.43015
- [7] P. Bougerol, Exemples de théorèmes locaux sur les groupes résolubles, Ann. Inst. H. Poincaré 19 (1983), 369-391. Zbl0533.60010
- [8] J. Cheeger, M. Gromov and M. E. Taylor, Finite propagation speed, kernel estimates for functions of the Laplacian, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. Zbl0493.53035
- [9] M. Christ, bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73-81. Zbl0739.42010
- [10] J.-L. Clerc and E. M. Stein, multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911-3912. Zbl0296.43004
- [11] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. Zbl0224.43006
- [12] M. G. Cowling, S. Giulini, G. I. Gaudry and G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637-649. Zbl0722.22006
- [13] L. De Michele and G. Mauceri, multipliers on the Heisenberg group, Michigan J. Math. 26 (1979), 361-371. Zbl0437.43005
- [14] L. De Michele and G. Mauceri, multipliers on stratified groups, Ann. Mat. Pura Appl. 148 (1987), 353-366. Zbl0638.43007
- [15] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton University Press, Princeton, N.J., 1982. Zbl0508.42025
- [16] G. I. Gaudry, T. Qian and P. Sjögren, Singular integrals associated to the Laplacian on the affine group ax+b, preprint. Zbl0776.43003
- [17] S. Giulini and G. Mauceri, Analysis of a distinguished Laplacean on solvable Lie groups, preprint. Zbl0801.43002
- [18] W. Hebisch, The subalgebra of generated by the Laplacean, Proc. Amer. Mat. Soc., to appear. Zbl0789.22018
- [19] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984. Zbl0543.58001
- [20] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963. Zbl0115.10603
- [21] L. Hörmander, Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. Zbl0093.11402
- [22] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. Zbl0316.43005
- [23] A. Hulanicki and E. M. Stein, Marcinkiewicz multiplier theorem for stratified groups, manuscript.
- [24] G. Mauceri and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154. Zbl0763.43005
- [25] S. Mikhlin, Multidimensional Singular Integral Equations, Pergamon Press, 1965.
- [26] D. Müller and E. M. Stein, announcement at a conference, August 1992.
- [27] J.-P. Pier, Amenable Locally Compact Groups, Wiley, New York, 1984. Zbl0597.43001
- [28] R. J. Stanton and P. A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251-276. Zbl0411.43014
- [29] M. E. Taylor, estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793. Zbl0691.58043
- [30] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410. Zbl0634.22008
- [31] L. Vretare, On Fourier multipliers on certain symmetric spaces, Math. Scand. 37 (1975), 111-121.
- [32] N. J. Weiss, estimates for bi-invariant operators on compact Lie groups, Amer. J. Math. 94 (1972), 103-118. Zbl0239.43004
Citations in EuDML Documents
top- Maria Vallarino, A maximal function on harmonic extensions of -type groups
- Waldemar Hebisch, Boundedness of spectral multipliers for an exponential solvable Lie group
- Maria Vallarino, Spazi di Hardy su gruppi a crescita esponenziale di volume
- Sami Mustapha, Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires
- Giancarlo Mauceri, Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck
- Detlef Müller, Sub-Laplacians of holomorphic -type on exponential Lie groups
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.