An homotopy formula for the Hochschild cohomology

M. De Wilde; P. B. A. Lecomte

Compositio Mathematica (1995)

  • Volume: 96, Issue: 1, page 99-109
  • ISSN: 0010-437X

How to cite

top

De Wilde, M., and Lecomte, P. B. A.. "An homotopy formula for the Hochschild cohomology." Compositio Mathematica 96.1 (1995): 99-109. <http://eudml.org/doc/90358>.

@article{DeWilde1995,
author = {De Wilde, M., Lecomte, P. B. A.},
journal = {Compositio Mathematica},
keywords = {smooth, Hausdorff, second countable manifold; space of smooth complex valued functions; multidifferential operators; -graded Lie algebras; Hochschild cochains; Hochschild coboundary; nc elements; isomorphism on cohomology; homotopy maps; skew-symmetrization; star products; deformations; linear local maps},
language = {eng},
number = {1},
pages = {99-109},
publisher = {Kluwer Academic Publishers},
title = {An homotopy formula for the Hochschild cohomology},
url = {http://eudml.org/doc/90358},
volume = {96},
year = {1995},
}

TY - JOUR
AU - De Wilde, M.
AU - Lecomte, P. B. A.
TI - An homotopy formula for the Hochschild cohomology
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 96
IS - 1
SP - 99
EP - 109
LA - eng
KW - smooth, Hausdorff, second countable manifold; space of smooth complex valued functions; multidifferential operators; -graded Lie algebras; Hochschild cochains; Hochschild coboundary; nc elements; isomorphism on cohomology; homotopy maps; skew-symmetrization; star products; deformations; linear local maps
UR - http://eudml.org/doc/90358
ER -

References

top
  1. 1 F. Bayen, L. Flato, C. Fronsdal, A. Lichnerowicz, D. Stemheimer: Deformation theory and quantization. Ann. of Physics121 (1978), pp. 61-110 and 111-151. Zbl0377.53025MR496157
  2. 2 M. Cahen, M. De Wilde, S. Gutt: Local cohomology of the algebra of C∞ functions on a connected manifold. Lett. Math. Phys.4 (1980), pp.157-167. Zbl0453.58026
  3. 3 M. De Wilde, P. Lecomte: Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations in: Deformations Theory of Algebras and Structures and Applications, M. Hazewinkel and M. Gerstenhaber, Eds., NATO ASI Series C, Vol. 247 (1988), pp. 897-960. Zbl0685.58039MR981635
  4. 4 M Gerstenhaber:The cohomology structure of an associative ring. Annals of Math.78 (1963), pp. 264-288. Zbl0131.27302MR161898
  5. 5 M. Gerstenhaber, S.D. Schack: Algebraic Cohomology and deformation theory in: Deformations Theory of Algebras and Structures and Applications, M. Hazewinkel and M. Gerstenhaber, Eds., NATO ASI Series C, Vol. 247 (1988), pp. 11-264. Zbl0676.16022MR981619
  6. 6 S. Gutt: An explicit *-product on the cotangent bundle of a Lie group. Lett. Math. Phys.7 (1983), pp. 249-258. Zbl0522.58019MR706215
  7. 7 G. Hochschild, B. Kostant, A. Rosenberg: Differential forms on regular affine algebras. Trans. Amer. Math. Soc.102 (1962), pp. 383-408. Zbl0102.27701MR142598
  8. 8 S. Maclane: Homology. Grundlehren der Math. Wissenschaften, 114, Springer-Verlag, Berlin (1963). Zbl0133.26502MR156879
  9. 9 J. Peetre: Une caractérisation abstraite des opérateurs différentiels. Math. Scandinavica7 (1959), pp. 211-218 and ibid. 8 (1960), pp. 116-120. Zbl0097.10402MR112146
  10. 10 J. Vey: Déformations du crochet de Poisson d'une variété symplectique. Comm. Math. Helv.50 (1975), pp. 421-454. Zbl0351.53029MR420753

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.