Variable neighborhood search for extremal graphs 13. on girth

Mustapha Aouchiche; Pierre Hansen

RAIRO - Operations Research (2006)

  • Volume: 39, Issue: 4, page 275-293
  • ISSN: 0399-0559

Abstract

top
The AutoGraphiX system (AGX1 et AGX2) allows, among other functions, automated generation of conjectures in graph theory and, in its most recent version, automated proof of simple conjectures. To illustrate these functions and the type of results obtained, we study systematically in this paper, conjectures of the form b ̲ n g i b ¯ n where g denotes the girth (or length of the smallest cycle) of a graph G=(V, E), i another invariant among independence number, radius,iameter, minimum, average or maximum degree, b ̲ n and b ¯ n best possible functions of the order n of G, and denotes one of the four operations +,-,×,/. 48 such conjectures are obtained: the easiest ones are proved automatically and the others by hand. Moreover 12 open and unstudied conjectures are submitted to the readers.

How to cite

top

Aouchiche, Mustapha, and Hansen, Pierre. "Recherche à voisinage variable de graphes extrémaux 13. à propos de la maille*." RAIRO - Operations Research 39.4 (2006): 275-293. <http://eudml.org/doc/105335>.

@article{Aouchiche2006,
abstract = { Le système AutoGraphiX (AGX1 et AGX2) permet, parmi d'autres fonctions, la génération automatique de conjectures en théorie des graphes et, dans une version plus récente, la preuve automatique de conjectures simples. Afin d'illustrer ces fonctions et le type de résultats obtenus, nous étudions systématiquement ici des conjectures obtenues par ce système et de la forme $\underline\{b\}_\{n\} \, \le \, g \, \oplus \, i \, \le \, \overline\{b\}_\{n\}$ où g désigne la maille (ou longueur du plus petit cycle) du graphe G=(V, E), i un autre invariant choisi parmi le nombre de stabilité, le rayon, le diamètre, le degré minimum, moyen ou maximum, $\underline\{b\}_\{n\} $ et $ \overline\{b\}_\{n\} $ des fonctions de l'ordre n = |V| de G les meilleures possibles, enfin $ \oplus $ correspond à une des opérations +,-,×,/. 48 telles conjectures sont obtenues: les plus simples sont démontrées automatiquement et les autres à la main. De plus 12 autres conjectures ouvertes et non encore étudiées sont soumises aux lecteurs. },
author = {Aouchiche, Mustapha, Hansen, Pierre},
journal = {RAIRO - Operations Research},
keywords = {Graphe; invariant; conjecture; AGX; maille.},
language = {fre},
month = {4},
number = {4},
pages = {275-293},
publisher = {EDP Sciences},
title = {Recherche à voisinage variable de graphes extrémaux 13. à propos de la maille*},
url = {http://eudml.org/doc/105335},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Aouchiche, Mustapha
AU - Hansen, Pierre
TI - Recherche à voisinage variable de graphes extrémaux 13. à propos de la maille*
JO - RAIRO - Operations Research
DA - 2006/4//
PB - EDP Sciences
VL - 39
IS - 4
SP - 275
EP - 293
AB - Le système AutoGraphiX (AGX1 et AGX2) permet, parmi d'autres fonctions, la génération automatique de conjectures en théorie des graphes et, dans une version plus récente, la preuve automatique de conjectures simples. Afin d'illustrer ces fonctions et le type de résultats obtenus, nous étudions systématiquement ici des conjectures obtenues par ce système et de la forme $\underline{b}_{n} \, \le \, g \, \oplus \, i \, \le \, \overline{b}_{n}$ où g désigne la maille (ou longueur du plus petit cycle) du graphe G=(V, E), i un autre invariant choisi parmi le nombre de stabilité, le rayon, le diamètre, le degré minimum, moyen ou maximum, $\underline{b}_{n} $ et $ \overline{b}_{n} $ des fonctions de l'ordre n = |V| de G les meilleures possibles, enfin $ \oplus $ correspond à une des opérations +,-,×,/. 48 telles conjectures sont obtenues: les plus simples sont démontrées automatiquement et les autres à la main. De plus 12 autres conjectures ouvertes et non encore étudiées sont soumises aux lecteurs.
LA - fre
KW - Graphe; invariant; conjecture; AGX; maille.
UR - http://eudml.org/doc/105335
ER -

References

top
  1. M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, L. Hiesse, J. Lacheré and A. Monhait, Variable Neighborhood Search for Extremal Graphs. 14. The AutoGraphiX 2 System. Global Optimization: From Theory to Implementation, edited by L. Liberti and N. Maculan, Springer (2005).  
  2. M. Aouchiche, G. Caporossi and P. Hansen, Automated Comparison of Graph Invariants. Les Cahiers du GERAD, G–2005–40, rapport technique, HEC Montréal (2005) 21 pages.  
  3. S. Belhaiza, N.M.M. de Abreu, P. Hansen and C.S. Oliveira, Variable Neighborhood Search for Extremal Graphs 11. Bounds on Algebraic Connectivity, edited by D. Avis, A. Hertz and O. Marcotte, Graph Theory and Combinatorial Optimization, Dordrecht, Kluwer (2005) 1–16.  
  4. R. C. Brigham and R. D. Dutton, A Compilation of Relations between Graph Invariants. Networks21 (1991) 421–455.  
  5. G. Caporossi, D. Cvetkovic, I. Gutman and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 2. Finding Graphs with Extremal Energy. J. Chem. Inform. Comput. Sci.39 (1999) 984–996.  
  6. G. Caporossi, I. Gutman and P. Hansen, Variable Neighborhood Search for Extremal Graphs. 4. Chemical Trees with Extremal Connectivity Index. Comput. Chem.23 (1999) 469–477.  
  7. G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. I. The AutoGraphiX System. Discrete Math.212 (2000) 29–44.  
  8. G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. V. Three Ways to Automate Finding Conjectures. Discrete Math.276 (2004) 81–94.  
  9. F.R.K. Chung, The Average Distance and the Independence Number. J. Graph Theory12 (1988) 229–235.  
  10. D. Cvetković, S. Simić, G. Caporossi and P. Hansen, Variable Neighborhood Search for Extremal Graphs. III. On the Largest Eigenvalue of Color-Constrained Trees. Linear Multilinear Algebra49 (2001) 143–160.  
  11. D. Cvetković and S. Simić, Graph Theoretical Results Obtained by the Support of the Expert System “GRAPH” - an Extended Survey. In [13].  
  12. S. Fajtlowicz, On Conjectures of Graffiti. Discrete Math.72 (1988) 113–118.  
  13. Graphs and Discovery. DIMACS Series in Discrete Math. and Theoretical Computer Science, edited by S. Fajtlowicz, P. Fowler, P. Hansen, M. Janowitz and F. Roberts, Providence, AMS (2005).  
  14. I. Gutman, P. Hansen and H. Mélot, Variable Neighborhood Search for Extremal Graphs. 10. Comparison of Irregularity Indices for Chemical Trees. J. Chem. Inform. Comput. Sci. (2005, to appear).  
  15. P. Hansen, Computers in Graph Theory. Graph Theory Notes of New York43 (2002) 20–34.  
  16. P. Hansen, How Far Is, Should and Could Be Conjecture-Making in Graph Theory an Automated Process ? In [13].  
  17. P. Hansen and H. Mélot, Variable Neighborhood Search for Extremal Graphs. 6. Analyzing Bounds for the Connectivity Index. J. Chem. Inform. Comput. Sci.43 (2003) 1–14.  
  18. P. Hansen and H. Mélot, Variable Neighborhood Search for Extremal Graphs. 9. Bounding the Irregularity of a Graph. In [13].  
  19. P. Hansen and N. Mladenović, Variable Neighborhood Search: Principles and Applications. Eur. J. Oper. Res.130 (2001) 449–467.  
  20. N. Mladenović and P. Hansen, Variable Neighborhood Search. Comput. Oper. Res.24 (1997) 1097–1100.  
  21. E.A. Nordhaus and J.W. Gaddum, On Complementary Graphs. Amer. Math. Monthly63 (1956) 175–177.  
  22. B.A. Smith, Private communication (2004).  
  23. P. Turán, Eine Extremalaufgabe aus der Graphentheorie. (Hungarian) Mat. Fiz. Lapok48 (1941) 436–452.  
  24. Written on the wall. Electronic file available from (1999).  URIhttp://math.uh.edu/~clarson/
  25. * Cet article est le treizième de la série “Variable Neighborhood Search for Extremal Graphs” publiée à partir de 1998 (voir bibliographie). La recherche présentée a bénéficié du support de la Chaire HEC en Exploitation de Données et de la subvention CRSNG No. 105574-1998.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.