Groups whose proper subgroups are locally finite-by-nilpotent
Amel Dilmi[1]
- [1] Department of Mathematics Faculty of Sciences Ferhat Abbas University Setif 19000 ALGERIA
Annales mathématiques Blaise Pascal (2007)
- Volume: 14, Issue: 1, page 29-35
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topReferences
top- A.O. Asar, Nilpotent-by-Chernikov, J. London Math.Soc 61 (2000), 412-422 Zbl0961.20031MR1756802
- V.V. Belyaev, Groups of the Miller-Moreno type, Sibirsk. Mat. Z. 19 (1978), 509-514 Zbl0394.20025MR577067
- B. Bruno, R. E. Phillips, On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova 69 (1983), 153-168 Zbl0522.20022MR716991
- G. Endimioni, G. Traustason, On Torsion-by-nilpotent groups, J. Algebra 241 (2001), 669-676 Zbl0984.20024MR1843318
- M. Kuzucuoglu, R. E. Phillips, Locally finite minimal non FC-groups, Math. Proc. Cambridge Philos. Soc. 105 (1989), 417-420 Zbl0686.20034MR985676
- M. F. Newman, J. Wiegold, Groups with many nilpotent subgroups, Arch. Math. 15 (1964), 241-250 Zbl0134.26102MR170949
- A. Y. Olshanski, An infinite simple torsion-free noetherian group, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 1328-1393 Zbl0431.20027MR567039
- J. Otal, J. M. Pena, Groups in which every proper subgroup is Cernikov-by-nilpotent or nilpotent-by-Cernikov, Arch.Math. 51 (1988), 193-197 Zbl0632.20018MR960393
- D. J. S. Robinson, Finiteness conditions and generalized soluble groups, (1972), Springer-Verlag Zbl0243.20032
- D. J. S. Robinson, A Course in the Theory of Groups, (1982), Springer-Verlag Zbl0483.20001MR648604
- H Smith, Groups with few non-nilpotent subgroups, Glasgow Math. J. 39 (1997), 141-151 Zbl0883.20018MR1460630
- M. Xu, Groups whose proper subgroups are Baer groups, Acta. Math. Sinica 40 (1996), 10-17 Zbl0840.20030MR1388572
- M. Xu, Groups whose proper subgroups are finite-by-nilpotent, Arch. Math. 66 (1996), 353-359 Zbl0857.20015MR1383898