On minimal non-PC-groups
Francesco Russo[1]; Nadir Trabelsi[2]
- [1] Mathematics Department, University of Naples Federico II via Cinthia, Naples, 80126, Italy
- [2] Laboratory of fundamental and numerical Mathematics, Mathematics Department University Ferhat Abbas, Setif, 19000, Algeria
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 2, page 277-286
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topRusso, Francesco, and Trabelsi, Nadir. "On minimal non-PC-groups." Annales mathématiques Blaise Pascal 16.2 (2009): 277-286. <http://eudml.org/doc/10580>.
@article{Russo2009,
abstract = {A group $G$ is said to be a PC-group, if $G/C_\{G\}(x^\{G\})$ is a polycyclic-by-finite group for all $x\in G$. A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.},
affiliation = {Mathematics Department, University of Naples Federico II via Cinthia, Naples, 80126, Italy; Laboratory of fundamental and numerical Mathematics, Mathematics Department University Ferhat Abbas, Setif, 19000, Algeria},
author = {Russo, Francesco, Trabelsi, Nadir},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Polycyclic-by-finite conjugacy classes; minimal non-PC-groups; locally graded groups; PC-groups; minimal non-PC groups; polycyclic-by-finite groups; subgroups of finite index},
language = {eng},
month = {7},
number = {2},
pages = {277-286},
publisher = {Annales mathématiques Blaise Pascal},
title = {On minimal non-PC-groups},
url = {http://eudml.org/doc/10580},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Russo, Francesco
AU - Trabelsi, Nadir
TI - On minimal non-PC-groups
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 277
EP - 286
AB - A group $G$ is said to be a PC-group, if $G/C_{G}(x^{G})$ is a polycyclic-by-finite group for all $x\in G$. A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.
LA - eng
KW - Polycyclic-by-finite conjugacy classes; minimal non-PC-groups; locally graded groups; PC-groups; minimal non-PC groups; polycyclic-by-finite groups; subgroups of finite index
UR - http://eudml.org/doc/10580
ER -
References
top- J. C. Beidleman, A. Galoppo, M. Manfredino, On PC-hypercentral and CC-hypercentral groups, Comm. Alg. 26 (1998), 3045-3055 Zbl0911.20029MR1635906
- V. V. Belyaev, Minimal non-FC-groups, VI All Union Symposium Group Theory (Čerkassy, 1978) (1980), 97-102, Naukova Dumka Zbl0454.20042MR611367
- V. V. Belyaev, N. F. Sesekin, Infinite groups of Miller-Moreno type, Acta Math. Hungar. 26 (1975), 369-376 Zbl0335.20013MR404457
- A. Dilmi, Groups whose proper subgroups are locally finite-by-nilpotent, Ann. Math. Blaise Pascal 14 (2007), 29-35 Zbl1131.20023MR2298722
- S. Franciosi, F. de Giovanni, M. J. Tomkinson, Groups with polycyclic-by-finite conjugacy classes, Boll. U. M. I. 7 (1990), 35-55 Zbl0707.20018MR1049656
- L. Fuchs, Abelian Groups, (1967), Pergamon Press, London Zbl0100.02803MR111783
- M. F. Newman, J. Wiegold, Arch. Math., Soviet Math. Dokl. 15 (1964), 241-250 Zbl0134.26102MR170949
- A. Yu. Ol’shanskii, Infinite groups with cyclic subgroups, Soviet Math. Dokl. 20 (1979), 343-346 Zbl0431.20025MR527709
- J. Otál, J. M. Peña, Minimal Non-CC-Groups, Comm. Algebra 16 (1988), 1231-1242 Zbl0644.20025MR939041
- Ya. D. Polovickii, Groups with extremal classes of conjugated elements, Sibirski Math. Z. 5 (1964), 891-895 MR168658
- D. J. Robinson, Finiteness conditions and generalized soluble groups, (1972), Springer Verlag, Berlin Zbl0243.20033
- M. J. Tomkinson, FC-groups, (1984), Pitman, Boston Zbl0547.20031MR742777
- N. Trabelsi, On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups, C. R. Acad. Sci. Paris Ser. I 344 (2007), 353-356 Zbl1113.20032MR2310669
- M. Xu, Groups whose proper subgroups are finite-by-nilpotent, Arch. Math. 66 (1996), 353-359 Zbl0857.20015MR1383898
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.