On minimal non-PC-groups

Francesco Russo[1]; Nadir Trabelsi[2]

  • [1] Mathematics Department, University of Naples Federico II via Cinthia, Naples, 80126, Italy
  • [2] Laboratory of fundamental and numerical Mathematics, Mathematics Department University Ferhat Abbas, Setif, 19000, Algeria

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 2, page 277-286
  • ISSN: 1259-1734

Abstract

top
A group G is said to be a PC-group, if G / C G ( x G ) is a polycyclic-by-finite group for all x G . A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.

How to cite

top

Russo, Francesco, and Trabelsi, Nadir. "On minimal non-PC-groups." Annales mathématiques Blaise Pascal 16.2 (2009): 277-286. <http://eudml.org/doc/10580>.

@article{Russo2009,
abstract = {A group $G$ is said to be a PC-group, if $G/C_\{G\}(x^\{G\})$ is a polycyclic-by-finite group for all $x\in G$. A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.},
affiliation = {Mathematics Department, University of Naples Federico II via Cinthia, Naples, 80126, Italy; Laboratory of fundamental and numerical Mathematics, Mathematics Department University Ferhat Abbas, Setif, 19000, Algeria},
author = {Russo, Francesco, Trabelsi, Nadir},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Polycyclic-by-finite conjugacy classes; minimal non-PC-groups; locally graded groups; PC-groups; minimal non-PC groups; polycyclic-by-finite groups; subgroups of finite index},
language = {eng},
month = {7},
number = {2},
pages = {277-286},
publisher = {Annales mathématiques Blaise Pascal},
title = {On minimal non-PC-groups},
url = {http://eudml.org/doc/10580},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Russo, Francesco
AU - Trabelsi, Nadir
TI - On minimal non-PC-groups
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 277
EP - 286
AB - A group $G$ is said to be a PC-group, if $G/C_{G}(x^{G})$ is a polycyclic-by-finite group for all $x\in G$. A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.
LA - eng
KW - Polycyclic-by-finite conjugacy classes; minimal non-PC-groups; locally graded groups; PC-groups; minimal non-PC groups; polycyclic-by-finite groups; subgroups of finite index
UR - http://eudml.org/doc/10580
ER -

References

top
  1. J. C. Beidleman, A. Galoppo, M. Manfredino, On PC-hypercentral and CC-hypercentral groups, Comm. Alg. 26 (1998), 3045-3055 Zbl0911.20029MR1635906
  2. V. V. Belyaev, Minimal non-FC-groups, VI All Union Symposium Group Theory (Čerkassy, 1978) (1980), 97-102, Naukova Dumka Zbl0454.20042MR611367
  3. V. V. Belyaev, N. F. Sesekin, Infinite groups of Miller-Moreno type, Acta Math. Hungar. 26 (1975), 369-376 Zbl0335.20013MR404457
  4. A. Dilmi, Groups whose proper subgroups are locally finite-by-nilpotent, Ann. Math. Blaise Pascal 14 (2007), 29-35 Zbl1131.20023MR2298722
  5. S. Franciosi, F. de Giovanni, M. J. Tomkinson, Groups with polycyclic-by-finite conjugacy classes, Boll. U. M. I. 7 (1990), 35-55 Zbl0707.20018MR1049656
  6. L. Fuchs, Abelian Groups, (1967), Pergamon Press, London Zbl0100.02803MR111783
  7. M. F. Newman, J. Wiegold, Arch. Math., Soviet Math. Dokl. 15 (1964), 241-250 Zbl0134.26102MR170949
  8. A. Yu. Ol’shanskii, Infinite groups with cyclic subgroups, Soviet Math. Dokl. 20 (1979), 343-346 Zbl0431.20025MR527709
  9. J. Otál, J. M. Peña, Minimal Non-CC-Groups, Comm. Algebra 16 (1988), 1231-1242 Zbl0644.20025MR939041
  10. Ya. D. Polovickii, Groups with extremal classes of conjugated elements, Sibirski Math. Z. 5 (1964), 891-895 MR168658
  11. D. J. Robinson, Finiteness conditions and generalized soluble groups, (1972), Springer Verlag, Berlin Zbl0243.20033
  12. M. J. Tomkinson, FC-groups, (1984), Pitman, Boston Zbl0547.20031MR742777
  13. N. Trabelsi, On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups, C. R. Acad. Sci. Paris Ser. I 344 (2007), 353-356 Zbl1113.20032MR2310669
  14. M. Xu, Groups whose proper subgroups are finite-by-nilpotent, Arch. Math. 66 (1996), 353-359 Zbl0857.20015MR1383898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.