A degenerate parabolic system for three-phase flows in porous media
- [1] Lavrentyev Institute of Hydrodynamics Av. Lavrentyev 15 Novosibirsk Russia
Annales mathématiques Blaise Pascal (2007)
- Volume: 14, Issue: 2, page 243-254
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topShelukhin, Vladimir. "A degenerate parabolic system for three-phase flows in porous media." Annales mathématiques Blaise Pascal 14.2 (2007): 243-254. <http://eudml.org/doc/10547>.
@article{Shelukhin2007,
abstract = {A classical model for three-phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.},
affiliation = {Lavrentyev Institute of Hydrodynamics Av. Lavrentyev 15 Novosibirsk Russia},
author = {Shelukhin, Vladimir},
journal = {Annales mathématiques Blaise Pascal},
keywords = {capillary immiscible; diffusion-capillarity tensor; global existence},
language = {eng},
month = {7},
number = {2},
pages = {243-254},
publisher = {Annales mathématiques Blaise Pascal},
title = {A degenerate parabolic system for three-phase flows in porous media},
url = {http://eudml.org/doc/10547},
volume = {14},
year = {2007},
}
TY - JOUR
AU - Shelukhin, Vladimir
TI - A degenerate parabolic system for three-phase flows in porous media
JO - Annales mathématiques Blaise Pascal
DA - 2007/7//
PB - Annales mathématiques Blaise Pascal
VL - 14
IS - 2
SP - 243
EP - 254
AB - A classical model for three-phase capillary immiscible flows in a porous medium is considered. Capillarity pressure functions are found, with a corresponding diffusion-capillarity tensor being triangular. The model is reduced to a degenerate quasilinear parabolic system. A global existence theorem is proved under some hypotheses on the model data.
LA - eng
KW - capillary immiscible; diffusion-capillarity tensor; global existence
UR - http://eudml.org/doc/10547
ER -
References
top- M. B. Allen, J. B. Behie, Multiphase flows in porous media: Mechanics, mathematics and numerics, (1988), Springer-Verlag, New York Zbl0652.76063MR953309
- H. Amann, Dynamic theory of quasi-linear parabolic systems III. Global existence, Math. Z. 202 (1989), 219-250 Zbl0702.35125MR1013086
- Z. Chen, R. E. Ewing, Comparison of various formulations of three-phase flow in porous media, Journal of Computational Physics 132 (1997), 362-373 Zbl0880.76089MR1445003
- H. Frid, V. Shelukhin, A quasilinear parabolic system for three-phase capillary flow in porous media, SIAM J. Math. Anal. 35 no. 4 (2003), 1029-1041 Zbl1049.35097MR2049032
- H. Frid, V. Shelukhin, Initial boundary value problems for a quasilinear parabolic system in three-phase capillary flow in porous media, SIAM J. Math. Anal. 36 no. 5 (2005), 1407-1425 Zbl1083.35049MR2139555
- S. M. Hassanizadeh, W. G. Gray, Theormodynamic basis of capillary pressure in porous media, Water Resources Research 29 (1993), 3389-3405
- O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasi-linear equations of parabolic type, (1968), AMS, Rhode Island: Providence Zbl0174.15403
- L. V. Ovsiannikov, Group Analysis of Differential Equations, (1982), Academic Press, New York, London Zbl0485.58002MR668703
- D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, (1977), Elsevier Scientific Publishing Company, Amsterdam Oxford New York
- H. L. Stone, Probability model for estimating three-phase relative permeability, J. of Petroleum Technology 22 (1970), 214-218
- A. N. Varchenko, A. F. Zazovskii, Three-phase filtration of immiscible fluids, Itogi Nauki i Tekhniki, Seriya Kompleksnie i spetsial’nie Razdely Mekhaniki no. 4 (in Russian) (1991), 98-154, GamkrelidzeR. V.R. V.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.