P-adic Spaces of Continuous Functions I

Athanasios Katsaras[1]

  • [1] Department of Mathematics University of Ioannina Ioannina, 45110 Greece

Annales mathématiques Blaise Pascal (2008)

  • Volume: 15, Issue: 1, page 109-133
  • ISSN: 1259-1734

Abstract

top
Properties of the so called θ o -complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space C ( X , E ) of all continuous functions, from a zero-dimensional topological space X to a non-Archimedean locally convex space E , equipped with the topology of uniform convergence on the compact subsets of X to be polarly barrelled or polarly quasi-barrelled.

How to cite

top

Katsaras, Athanasios. "P-adic Spaces of Continuous Functions I." Annales mathématiques Blaise Pascal 15.1 (2008): 109-133. <http://eudml.org/doc/10549>.

@article{Katsaras2008,
abstract = {Properties of the so called $\theta _\{o\}$-complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space $C(X,E)$ of all continuous functions, from a zero-dimensional topological space $X$ to a non-Archimedean locally convex space $E$, equipped with the topology of uniform convergence on the compact subsets of $X$ to be polarly barrelled or polarly quasi-barrelled.},
affiliation = {Department of Mathematics University of Ioannina Ioannina, 45110 Greece},
author = {Katsaras, Athanasios},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Non-Archimedean fields; zero-dimensional spaces; locally convex spaces; non-Archimedean fields; zero-dimenisonal spaces; locally convex spaces of continuous functions},
language = {eng},
month = {1},
number = {1},
pages = {109-133},
publisher = {Annales mathématiques Blaise Pascal},
title = {P-adic Spaces of Continuous Functions I},
url = {http://eudml.org/doc/10549},
volume = {15},
year = {2008},
}

TY - JOUR
AU - Katsaras, Athanasios
TI - P-adic Spaces of Continuous Functions I
JO - Annales mathématiques Blaise Pascal
DA - 2008/1//
PB - Annales mathématiques Blaise Pascal
VL - 15
IS - 1
SP - 109
EP - 133
AB - Properties of the so called $\theta _{o}$-complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space $C(X,E)$ of all continuous functions, from a zero-dimensional topological space $X$ to a non-Archimedean locally convex space $E$, equipped with the topology of uniform convergence on the compact subsets of $X$ to be polarly barrelled or polarly quasi-barrelled.
LA - eng
KW - Non-Archimedean fields; zero-dimensional spaces; locally convex spaces; non-Archimedean fields; zero-dimenisonal spaces; locally convex spaces of continuous functions
UR - http://eudml.org/doc/10549
ER -

References

top
  1. J. Aguayo, N. De Grande-De Kimpe, S. Navarro, Zero-dimensional pseudocompact and ultraparacompact spaces, -adic functional analysis (Nijmegen, 1996) 192 (1997), 11-17, Dekker, New York Zbl0888.54026MR1459198
  2. J. Aguayo, A. K. Katsaras, S. Navarro, On the dual space for the strict topology β 1 and the space M ( X ) in function space, Ultrametric functional analysis 384 (2005), 15-37, Amer. Math. Soc., Providence, RI Zbl1104.46046MR2174775
  3. George Bachman, Edward Beckenstein, Lawrence Narici, Seth Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112 Zbl0299.54016MR402687
  4. A. K. Katsaras, The strict topology in non-Archimedean vector-valued function spaces, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), 189-201 Zbl0548.46059MR749531
  5. A. K. Katsaras, Bornological spaces of non-Archimedean valued functions, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), 41-50 Zbl0628.46077MR883366
  6. A. K. Katsaras, On the strict topology in non-Archimedean spaces of continuous functions, Glas. Mat. Ser. III 35(55) (2000), 283-305 Zbl0970.46049MR1812558
  7. A. K. Katsaras, Separable measures and strict topologies on spaces of non-Archimedean valued functions, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 117-139 Zbl1107.46052MR2232644
  8. W. H. Schikhof, Locally convex spaces over nonspherically complete valued fields. I, II, Bull. Soc. Math. Belg. Sér. B 38 (1986), 187-207, 208–224 Zbl0615.46071MR871313
  9. A. C. M. van Rooij, Non-Archimedean functional analysis, 51 (1978), Marcel Dekker Inc., New York Zbl0396.46061MR512894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.