The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “P-adic Spaces of Continuous Functions I”

P-adic Spaces of Continuous Functions II

Athanasios Katsaras (2008)

Annales mathématiques Blaise Pascal

Similarity:

Necessary and sufficient conditions are given so that the space C ( X , E ) of all continuous functions from a zero-dimensional topological space X to a non-Archimedean locally convex space E , equipped with the topology of uniform convergence on the compact subsets of X , to be polarly absolutely quasi-barrelled, polarly o -barrelled, polarly -barrelled or polarly c o -barrelled. Also, tensor products of spaces of continuous functions as well as tensor products of certain E -valued measures are investigated. ...

On convolution operators with small support which are far from being convolution by a bounded measure

Edmond Granirer (1994)

Colloquium Mathematicae

Similarity:

Let C V p ( F ) be the left convolution operators on L p ( G ) with support included in F and M p ( F ) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that C V p ( F ) , C V p ( F ) / M p ( F ) and C V p ( F ) / W are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to M p ( F ) . Other subspaces of C V p ( F ) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.