Hyperdeterminant of an S L 2 -homomorphism

Jean Vallès[1]

  • [1] Laboratoire de Mathématiques Pures et Appliquées Université de Pau et des Pays de l’Adour 64000 PAU FRANCE

Annales mathématiques Blaise Pascal (2008)

  • Volume: 15, Issue: 1, page 81-86
  • ISSN: 1259-1734

Abstract

top
Let A 1 , , A s ( s 3 ) be non-trivial S L 2 ( ) -modules with dimensions n 1 + 1 n s + 1 (such that n 1 = n 2 + + n s ) and φ ( A 2 A s , A 1 * ) an S L 2 ( ) -homomorphism. We show that the hyperdeterminant of φ is null except if the modules A i are irreducibles and the homomorphism is the multiplication of homogeneous polynomials with two variables.

How to cite

top

Vallès, Jean. "Hyperdéterminant d’un $SL_{2}$-homomorphisme." Annales mathématiques Blaise Pascal 15.1 (2008): 81-86. <http://eudml.org/doc/10554>.

@article{Vallès2008,
abstract = {Etant donnés $A_\{1\},\cdots ,A_\{s\}$ ($ s\ge 3 $) des $SL_\{2\}(\{\mathbb\{C\}\})$-modules non triviaux de dimensions respectives $n_\{1\}+1\ge \cdots \ge n_\{s\}+1$ (avec $n_\{1\}= n_\{2\}+\cdots +n_\{s\}$) et $\phi \in \mathcal\{L\}(A_\{2\}\otimes \cdots \otimes A_\{s\}, A_\{1\}^\ast )$ un $SL_\{2\}(\{\mathbb\{C\}\})$-homomorphisme, nous montrons que l’hyperdéterminant de $\phi $ est nul sauf si les modules $A_\{i\}$ sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.},
affiliation = {Laboratoire de Mathématiques Pures et Appliquées Université de Pau et des Pays de l’Adour 64000 PAU FRANCE},
author = {Vallès, Jean},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Hyperdeterminant; Steinerbundles; $SL_\{2\}$ modules},
language = {fre},
month = {1},
number = {1},
pages = {81-86},
publisher = {Annales mathématiques Blaise Pascal},
title = {Hyperdéterminant d’un $SL_\{2\}$-homomorphisme},
url = {http://eudml.org/doc/10554},
volume = {15},
year = {2008},
}

TY - JOUR
AU - Vallès, Jean
TI - Hyperdéterminant d’un $SL_{2}$-homomorphisme
JO - Annales mathématiques Blaise Pascal
DA - 2008/1//
PB - Annales mathématiques Blaise Pascal
VL - 15
IS - 1
SP - 81
EP - 86
AB - Etant donnés $A_{1},\cdots ,A_{s}$ ($ s\ge 3 $) des $SL_{2}({\mathbb{C}})$-modules non triviaux de dimensions respectives $n_{1}+1\ge \cdots \ge n_{s}+1$ (avec $n_{1}= n_{2}+\cdots +n_{s}$) et $\phi \in \mathcal{L}(A_{2}\otimes \cdots \otimes A_{s}, A_{1}^\ast )$ un $SL_{2}({\mathbb{C}})$-homomorphisme, nous montrons que l’hyperdéterminant de $\phi $ est nul sauf si les modules $A_{i}$ sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.
LA - fre
KW - Hyperdeterminant; Steinerbundles; $SL_{2}$ modules
UR - http://eudml.org/doc/10554
ER -

References

top
  1. V Ancona, G Ottaviani, Unstable hyperplanes for Steiner bundles and multidimensional matrices, Advances in Geometry 1 (2001), 165-192 Zbl0983.14034MR1840220
  2. A Cayley, On the theory of linear transformations, Cambridge Math. J. (1845), 193-209 
  3. C Dionisi, Stabilizers for nondegenerate matrices of boundary format and Steiner bundles, Rev.Mat.Complut. 17 (2004), 459-469 Zbl1068.14019MR2083965
  4. I Dolgachev, M M Kapranov, Arrangement of hyperplanes and vector bundles on n , Duke Math. J. (1993), 633-664 Zbl0804.14007MR1240599
  5. I M Gelfand, M M Kapranov, A V Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser Zbl0827.14036MR1264417
  6. R L E. Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc. 11 (1961), 623-640 Zbl0212.26004MR137712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.