About the foliations of fibered manifolds

Hamidou Dathe[1]; Cédric Tarquini[2]

  • [1] Département de Mathématiques et Informatique Faculté des Sciences et Techniques Université Cheikh Anta Diop Dakar Sénégal
  • [2] Lycée Chrestien de Troyes FRANCE

Annales mathématiques Blaise Pascal (2008)

  • Volume: 15, Issue: 2, page 211-232
  • ISSN: 1259-1734

Abstract

top
We build an example of C 1 -foliation which are not conjuguated to a model foliation on a hyperbolic three manifold. We also prove some rigidity theorems of modele foliations on pseudo-Anosov fibered manifolds. class file.

How to cite

top

Dathe, Hamidou, and Tarquini, Cédric. "Sur les feuilletages des variétés fibrées." Annales mathématiques Blaise Pascal 15.2 (2008): 211-232. <http://eudml.org/doc/10561>.

@article{Dathe2008,
abstract = {Nous construisons un feuilletage exotique de classe $C^1$ sur tout fibré hyperbolique de genre $1$. Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.},
affiliation = {Département de Mathématiques et Informatique Faculté des Sciences et Techniques Université Cheikh Anta Diop Dakar Sénégal; Lycée Chrestien de Troyes FRANCE},
author = {Dathe, Hamidou, Tarquini, Cédric},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Feuilletage; hyperbolique; lamination; ; fibered manifolds; exotic foliations; rigidity theorems},
language = {fre},
month = {7},
number = {2},
pages = {211-232},
publisher = {Annales mathématiques Blaise Pascal},
title = {Sur les feuilletages des variétés fibrées},
url = {http://eudml.org/doc/10561},
volume = {15},
year = {2008},
}

TY - JOUR
AU - Dathe, Hamidou
AU - Tarquini, Cédric
TI - Sur les feuilletages des variétés fibrées
JO - Annales mathématiques Blaise Pascal
DA - 2008/7//
PB - Annales mathématiques Blaise Pascal
VL - 15
IS - 2
SP - 211
EP - 232
AB - Nous construisons un feuilletage exotique de classe $C^1$ sur tout fibré hyperbolique de genre $1$. Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.
LA - fre
KW - Feuilletage; hyperbolique; lamination; ; fibered manifolds; exotic foliations; rigidity theorems
UR - http://eudml.org/doc/10561
ER -

References

top
  1. Arnaud Denjoy, Les trajectoires à la surface du tore., C. R. Acad. Sci., Paris 223 (1946), 5-8 Zbl0063.01085MR16554
  2. Christopher Ennis, Morris W. Hirsch, Charles Pugh, Foliations that are not approximable by smoother ones, Geometric dynamics (Rio de Janeiro, 1981) 1007 (1983), 146-176, Springer, Berlin Zbl0526.57018MR730269
  3. A. Fatihi, F. Laudenbach, V. Poenaru, Travaux de Thurston sur les surfaces, (1979), S.M.F, France 
  4. E. Ghys, V. Sergiescu, Stabilité et conjugaison différentiable pour certai ns feuilletages, Topology 19 (1980), 179-197 Zbl0478.57017MR572582
  5. B. Hasselblatt, A. Katok, Intoduction to the modern theory of dynamical systems, (1995), Cambridge University Press, Cambridge Zbl0878.58020MR1326374
  6. F. Laudenbach, S. Blank, Sur l’isotopie des formes fermées en dimension 3, Ivent. Math 54 (1979), 103-177 Zbl0435.58002
  7. Hiromichi Nakayama, Transversely affine foliations of some surface bundles over S 1 of pseudo-Anosov type, Ann. Inst. Fourier (Grenoble) 41 (1991), 755-778 Zbl0731.58053MR1136602
  8. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc 73 (1967), 747-817 Zbl0202.55202MR228014
  9. W. Thurston, Norm on the homology of 3 -manifolds, Memoirs of the A.M.S 339 (1986), 99-130 Zbl0585.57006MR823443
  10. W. Thurston, Three-dimensional geometry and topology, (1997), Princeton university press Zbl0873.57001MR1435975
  11. R. F. Williams, The DA-maps of smale and structural stability, Global analysis, Proc. Sym. Pure and Appl. Math 15 (1970), 329-334 Zbl0213.50303MR264705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.