Transversely affine foliations of some surface bundles over S 1 of pseudo-Anosov type

Hiromichi Nakayama

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 3, page 755-778
  • ISSN: 0373-0956

Abstract

top
We consider transversely affine foliations without compact leaves of higher genus surface bundles over the circle of pseudo-Anosov type such that the Euler classes of the tangent bundles of the foliations coincide with that of the bundle foliation. We classify such foliations of those surface bundles whose monodromies satisfy a certain condition.

How to cite

top

Nakayama, Hiromichi. "Transversely affine foliations of some surface bundles over $S^1$ of pseudo-Anosov type." Annales de l'institut Fourier 41.3 (1991): 755-778. <http://eudml.org/doc/74936>.

@article{Nakayama1991,
abstract = {We consider transversely affine foliations without compact leaves of higher genus surface bundles over the circle of pseudo-Anosov type such that the Euler classes of the tangent bundles of the foliations coincide with that of the bundle foliation. We classify such foliations of those surface bundles whose monodromies satisfy a certain condition.},
author = {Nakayama, Hiromichi},
journal = {Annales de l'institut Fourier},
keywords = {surface bundle over ; transversely affine foliations; circle of pseudo-Anosov type},
language = {eng},
number = {3},
pages = {755-778},
publisher = {Association des Annales de l'Institut Fourier},
title = {Transversely affine foliations of some surface bundles over $S^1$ of pseudo-Anosov type},
url = {http://eudml.org/doc/74936},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Nakayama, Hiromichi
TI - Transversely affine foliations of some surface bundles over $S^1$ of pseudo-Anosov type
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 3
SP - 755
EP - 778
AB - We consider transversely affine foliations without compact leaves of higher genus surface bundles over the circle of pseudo-Anosov type such that the Euler classes of the tangent bundles of the foliations coincide with that of the bundle foliation. We classify such foliations of those surface bundles whose monodromies satisfy a certain condition.
LA - eng
KW - surface bundle over ; transversely affine foliations; circle of pseudo-Anosov type
UR - http://eudml.org/doc/74936
ER -

References

top
  1. [1] A. FATHI, F. LAUDENBACH and V. POÉNARU, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque, vol. 66-67 (1979). Zbl0406.00016MR82m:57003
  2. [2] E. GHYS and V. SERGIESCU, Stabilité et conjugaison différentiable pour certains feuilletages, Topology, 19 (1980), 179-197. Zbl0478.57017MR81k:57022
  3. [3] G. HECTOR and U. HIRSCH, Introduction to the geometry of foliations, Part B, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1983. Zbl0552.57001
  4. [4] T. INABA, Resilient leaves in transversely affine foliations, Tôhoku Math. J., (2) 41 (1989), 625-631. Zbl0674.57022MR91a:57025
  5. [5] T. INABA and S. MATSUMOTO, Non-singular expansive flows on 3-manifolds and foliations with round prong singularities, preprint, 1989. 
  6. [6] F. LAUDENBACH and S. BLANK, Isotopie de formes fermées en dimension trois, Invent. Math., 54 (1979), 103-177. Zbl0435.58002MR81d:58003
  7. [7] G. LEVITT, Pantalons et feuilletages des surfaces, Topology, 21 (1982), 9-33. Zbl0473.57014MR83f:57017
  8. [8] G. MEIGNIEZ, Actions de groupes sur la droite et feuilletages de codimension 1, Thèse, Université Claude Bernard-Lyon I, 1988. 
  9. [9] H. NAKAYAMA, On cutting pseudo-foliations along incompressible surfaces, preprint, 1988. Zbl0742.57009
  10. [10] S.P. NOVIKOV, Topology of foliations, Trudy Moskov Mat. Obshch., 14 (1965), 248-278, Trans. Moscow Math. Soc., 14 (1965), 268-304. Zbl0247.57006MR34 #824
  11. [11] R. ROUSSARIE, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Publ. Math. I.H.E.S., 43 (1974), 101-141. Zbl0356.57017MR50 #11268
  12. [12] B. SEKE, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble), 30-4 (1980), 1-29. Zbl0417.57011MR82b:57023
  13. [13] V.V. SOLODOV, Components of topological foliations, Math. USSR-Sbornik, 47 (1984), 329-343. Zbl0548.57014
  14. [14] I. TAMURA and A. SATO, On transverse foliations, Publ. Math. I.H.E.S., 54 (1981), 5-35. Zbl0484.57016MR83k:57022
  15. [15] W. THURSTON, A norm for the homology of 3-manifolds, Mem. A.M.S., 59, No. 339 (1986), 99-130. Zbl0585.57006MR88h:57014
  16. [16] W. THURSTON, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S., 19 (1988), 417-431. Zbl0674.57008MR89k:57023
  17. [17] N. TSUCHIYA, Elementary transversely affine foliations, preprint, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.