A purely analytical lower bound for
- [1] Laboratoire CNRS Paul Painlevé Université Lille I 59 655 Villeneuve d’Ascq Cedex
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 2, page 259-265
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topRamaré, Olivier. "A purely analytical lower bound for $L(1,\chi )$." Annales mathématiques Blaise Pascal 16.2 (2009): 259-265. <http://eudml.org/doc/10578>.
@article{Ramaré2009,
abstract = {We give a simple proof of $L(1,\chi )\sqrt\{q\}\gg 2^\{\omega (q)\}$ when $\chi $ is an odd primitiv quadratic Dirichlet character of conductor $q$. In particular we do not use the Dirichlet class-number formula.},
affiliation = {Laboratoire CNRS Paul Painlevé Université Lille I 59 655 Villeneuve d’Ascq Cedex},
author = {Ramaré, Olivier},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Lower bound for $L(1,\chi )$; Dirichlet class number formula; lower bound for ; Kloosterman sum},
language = {eng},
month = {7},
number = {2},
pages = {259-265},
publisher = {Annales mathématiques Blaise Pascal},
title = {A purely analytical lower bound for $L(1,\chi )$},
url = {http://eudml.org/doc/10578},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Ramaré, Olivier
TI - A purely analytical lower bound for $L(1,\chi )$
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 259
EP - 265
AB - We give a simple proof of $L(1,\chi )\sqrt{q}\gg 2^{\omega (q)}$ when $\chi $ is an odd primitiv quadratic Dirichlet character of conductor $q$. In particular we do not use the Dirichlet class-number formula.
LA - eng
KW - Lower bound for $L(1,\chi )$; Dirichlet class number formula; lower bound for ; Kloosterman sum
UR - http://eudml.org/doc/10578
ER -
References
top- Dorian Goldfeld, Gauss’s class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 23-37 Zbl0572.12004MR788386
- Joseph Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque (1985), 309-323 Zbl0551.12003MR768967
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.