Some examples of harmonic maps for -natural metrics
Mohamed Tahar Kadaoui Abbassi[1]; Giovanni Calvaruso[2]; Domenico Perrone[2]
- [1] Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco
- [2] Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 2, page 305-320
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topAbbassi, Mohamed Tahar Kadaoui, Calvaruso, Giovanni, and Perrone, Domenico. "Some examples of harmonic maps for $g$-natural metrics." Annales mathématiques Blaise Pascal 16.2 (2009): 305-320. <http://eudml.org/doc/10582>.
@article{Abbassi2009,
abstract = {We produce new examples of harmonic maps, having as source manifold a space $(M,g)$ of constant curvature and as target manifold its tangent bundle $TM$, equipped with a suitable Riemannian $g$-natural metric. In particular, we determine a family of Riemannian $g$-natural metrics $G$ on $T\mathbb\{S\}^2$, with respect to which all conformal gradient vector fields define harmonic maps from $\mathbb\{S\}^2$ into $(T\mathbb\{S\}^2,G)$.},
affiliation = {Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco; Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.; Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.},
author = {Abbassi, Mohamed Tahar Kadaoui, Calvaruso, Giovanni, Perrone, Domenico},
journal = {Annales mathématiques Blaise Pascal},
keywords = {harmonic map; tangent bundle; vector fields; $g$-natural metrics; spaces of constant curvature; tangent bundle, vector fields; -natural metrics},
language = {eng},
month = {7},
number = {2},
pages = {305-320},
publisher = {Annales mathématiques Blaise Pascal},
title = {Some examples of harmonic maps for $g$-natural metrics},
url = {http://eudml.org/doc/10582},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Abbassi, Mohamed Tahar Kadaoui
AU - Calvaruso, Giovanni
AU - Perrone, Domenico
TI - Some examples of harmonic maps for $g$-natural metrics
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 305
EP - 320
AB - We produce new examples of harmonic maps, having as source manifold a space $(M,g)$ of constant curvature and as target manifold its tangent bundle $TM$, equipped with a suitable Riemannian $g$-natural metric. In particular, we determine a family of Riemannian $g$-natural metrics $G$ on $T\mathbb{S}^2$, with respect to which all conformal gradient vector fields define harmonic maps from $\mathbb{S}^2$ into $(T\mathbb{S}^2,G)$.
LA - eng
KW - harmonic map; tangent bundle; vector fields; $g$-natural metrics; spaces of constant curvature; tangent bundle, vector fields; -natural metrics
UR - http://eudml.org/doc/10582
ER -
References
top- M. T. K. Abbassi, G. Calvaruso, D. Perrone, Harmonic sections of tangent bundles equipped with Riemannian -natural metrics, (2007) Zbl1226.53062
- Mohamed Tahar Kadaoui Abbassi, Maâti Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (2005), 71-92 Zbl1114.53015MR2142144
- Mohamed Tahar Kadaoui Abbassi, Maâti Sarih, On some hereditary properties of Riemannian -natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22 (2005), 19-47 Zbl1068.53016MR2106375
- Paul Baird, John C. Wood, Harmonic morphisms between Riemannian manifolds, 29 (2003), The Clarendon Press Oxford University Press, Oxford Zbl1055.53049MR2044031
- M. Benyounes, E. Loubeau, C. M. Wood, Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl. 25 (2007), 322-334 Zbl1128.53037MR2330461
- M. Benyounes, E. Loubeau, C.M. Wood, Harmonic maps and sections on spheres, (2008) Zbl1128.53037
- J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68 Zbl0401.58003MR495450
- James Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160 Zbl0122.40102MR164306
- Tôru Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27 Zbl0427.53019MR563393
- Ivan Kolář, Peter W. Michor, Jan Slovák, Natural operations in differential geometry, (1993), Springer-Verlag, Berlin Zbl0782.53013MR1202431
- Odette Nouhaud, Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), A815-A818 Zbl0349.53015MR431035
- C. Oniciuc, The tangent bundles and harmonicity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 43 (1997), 151-172 (1998) Zbl0989.53039MR1679113
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), 211-228 Zbl0392.31009MR510549
- Aristide Sanini, Maps between Riemannian manifolds with critical energy with respect to deformations of metrics, Rend. Mat. (7) 3 (1983), 53-63 Zbl0514.53037MR710809
- Hajime Urakawa, Calculus of variations and harmonic maps, 132 (1993), American Mathematical Society, Providence, RI Zbl0799.58001MR1252178
- Y. L. Xin, Some results on stable harmonic maps, Duke Math. J. 47 (1980), 609-613 Zbl0513.58019MR587168
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.