Some examples of harmonic maps for g -natural metrics

Mohamed Tahar Kadaoui Abbassi[1]; Giovanni Calvaruso[2]; Domenico Perrone[2]

  • [1] Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco
  • [2] Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 2, page 305-320
  • ISSN: 1259-1734

Abstract

top
We produce new examples of harmonic maps, having as source manifold a space ( M , g ) of constant curvature and as target manifold its tangent bundle T M , equipped with a suitable Riemannian g -natural metric. In particular, we determine a family of Riemannian g -natural metrics G on T 𝕊 2 , with respect to which all conformal gradient vector fields define harmonic maps from 𝕊 2 into ( T 𝕊 2 , G ) .

How to cite

top

Abbassi, Mohamed Tahar Kadaoui, Calvaruso, Giovanni, and Perrone, Domenico. "Some examples of harmonic maps for $g$-natural metrics." Annales mathématiques Blaise Pascal 16.2 (2009): 305-320. <http://eudml.org/doc/10582>.

@article{Abbassi2009,
abstract = {We produce new examples of harmonic maps, having as source manifold a space $(M,g)$ of constant curvature and as target manifold its tangent bundle $TM$, equipped with a suitable Riemannian $g$-natural metric. In particular, we determine a family of Riemannian $g$-natural metrics $G$ on $T\mathbb\{S\}^2$, with respect to which all conformal gradient vector fields define harmonic maps from $\mathbb\{S\}^2$ into $(T\mathbb\{S\}^2,G)$.},
affiliation = {Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco; Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.; Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.},
author = {Abbassi, Mohamed Tahar Kadaoui, Calvaruso, Giovanni, Perrone, Domenico},
journal = {Annales mathématiques Blaise Pascal},
keywords = {harmonic map; tangent bundle; vector fields; $g$-natural metrics; spaces of constant curvature; tangent bundle, vector fields; -natural metrics},
language = {eng},
month = {7},
number = {2},
pages = {305-320},
publisher = {Annales mathématiques Blaise Pascal},
title = {Some examples of harmonic maps for $g$-natural metrics},
url = {http://eudml.org/doc/10582},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Abbassi, Mohamed Tahar Kadaoui
AU - Calvaruso, Giovanni
AU - Perrone, Domenico
TI - Some examples of harmonic maps for $g$-natural metrics
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 305
EP - 320
AB - We produce new examples of harmonic maps, having as source manifold a space $(M,g)$ of constant curvature and as target manifold its tangent bundle $TM$, equipped with a suitable Riemannian $g$-natural metric. In particular, we determine a family of Riemannian $g$-natural metrics $G$ on $T\mathbb{S}^2$, with respect to which all conformal gradient vector fields define harmonic maps from $\mathbb{S}^2$ into $(T\mathbb{S}^2,G)$.
LA - eng
KW - harmonic map; tangent bundle; vector fields; $g$-natural metrics; spaces of constant curvature; tangent bundle, vector fields; -natural metrics
UR - http://eudml.org/doc/10582
ER -

References

top
  1. M. T. K. Abbassi, G. Calvaruso, D. Perrone, Harmonic sections of tangent bundles equipped with Riemannian g -natural metrics, (2007) Zbl1226.53062
  2. Mohamed Tahar Kadaoui Abbassi, Maâti Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (2005), 71-92 Zbl1114.53015MR2142144
  3. Mohamed Tahar Kadaoui Abbassi, Maâti Sarih, On some hereditary properties of Riemannian g -natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22 (2005), 19-47 Zbl1068.53016MR2106375
  4. Paul Baird, John C. Wood, Harmonic morphisms between Riemannian manifolds, 29 (2003), The Clarendon Press Oxford University Press, Oxford Zbl1055.53049MR2044031
  5. M. Benyounes, E. Loubeau, C. M. Wood, Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl. 25 (2007), 322-334 Zbl1128.53037MR2330461
  6. M. Benyounes, E. Loubeau, C.M. Wood, Harmonic maps and sections on spheres, (2008) Zbl1128.53037
  7. J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68 Zbl0401.58003MR495450
  8. James Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160 Zbl0122.40102MR164306
  9. Tôru Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979), 23-27 Zbl0427.53019MR563393
  10. Ivan Kolář, Peter W. Michor, Jan Slovák, Natural operations in differential geometry, (1993), Springer-Verlag, Berlin Zbl0782.53013MR1202431
  11. Odette Nouhaud, Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), A815-A818 Zbl0349.53015MR431035
  12. C. Oniciuc, The tangent bundles and harmonicity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 43 (1997), 151-172 (1998) Zbl0989.53039MR1679113
  13. J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), 211-228 Zbl0392.31009MR510549
  14. Aristide Sanini, Maps between Riemannian manifolds with critical energy with respect to deformations of metrics, Rend. Mat. (7) 3 (1983), 53-63 Zbl0514.53037MR710809
  15. Hajime Urakawa, Calculus of variations and harmonic maps, 132 (1993), American Mathematical Society, Providence, RI Zbl0799.58001MR1252178
  16. Y. L. Xin, Some results on stable harmonic maps, Duke Math. J. 47 (1980), 609-613 Zbl0513.58019MR587168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.