Harmonicity of vector fields on four-dimensional generalized symmetric spaces

Giovanni Calvaruso

Open Mathematics (2012)

  • Volume: 10, Issue: 2, page 411-425
  • ISSN: 2391-5455

Abstract

top
Let (M = G/H;g)denote a four-dimensional pseudo-Riemannian generalized symmetric space and g = m + h the corresponding decomposition of the Lie algebra g of G. We completely determine the harmonicity properties of vector fields belonging to m. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Vector fields defining harmonic maps are also classified, and the energy of these vector fields is explicitly calculated.

How to cite

top

Giovanni Calvaruso. "Harmonicity of vector fields on four-dimensional generalized symmetric spaces." Open Mathematics 10.2 (2012): 411-425. <http://eudml.org/doc/269059>.

@article{GiovanniCalvaruso2012,
abstract = {Let (M = G/H;g)denote a four-dimensional pseudo-Riemannian generalized symmetric space and g = m + h the corresponding decomposition of the Lie algebra g of G. We completely determine the harmonicity properties of vector fields belonging to m. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Vector fields defining harmonic maps are also classified, and the energy of these vector fields is explicitly calculated.},
author = {Giovanni Calvaruso},
journal = {Open Mathematics},
keywords = {Harmonic vector fields; Harmonic maps; Tangent sphere bundle; Generalized symmetric spaces; Pseudo-Riemannian homogeneous spaces; harmonic vector field; harmonic map; generalized symmetric spaces; pseudo-Riemannian space},
language = {eng},
number = {2},
pages = {411-425},
title = {Harmonicity of vector fields on four-dimensional generalized symmetric spaces},
url = {http://eudml.org/doc/269059},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Giovanni Calvaruso
TI - Harmonicity of vector fields on four-dimensional generalized symmetric spaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 411
EP - 425
AB - Let (M = G/H;g)denote a four-dimensional pseudo-Riemannian generalized symmetric space and g = m + h the corresponding decomposition of the Lie algebra g of G. We completely determine the harmonicity properties of vector fields belonging to m. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Vector fields defining harmonic maps are also classified, and the energy of these vector fields is explicitly calculated.
LA - eng
KW - Harmonic vector fields; Harmonic maps; Tangent sphere bundle; Generalized symmetric spaces; Pseudo-Riemannian homogeneous spaces; harmonic vector field; harmonic map; generalized symmetric spaces; pseudo-Riemannian space
UR - http://eudml.org/doc/269059
ER -

References

top
  1. [1] Abbassi M.T.K., Calvaruso G., Perrone D., Harmonicity of unit vector fields with respect to Riemannian g-natural metrics, Differential Geom. Appl., 2009, 27(1), 157–169 http://dx.doi.org/10.1016/j.difgeo.2008.06.016 Zbl1185.53070
  2. [2] Abbassi M.T.K., Calvaruso G., Perrone D., Some examples of harmonic maps for g-natural metrics, Ann. Math. Blaise Pascal, 2009, 16(2), 305–320 http://dx.doi.org/10.5802/ambp.269 Zbl1183.58008
  3. [3] Abbassi M.T.K., Calvaruso G., Perrone D., Harmonic maps defined by the geodesic flow, Houston J. Math, 2010, 36(1), 69–90 Zbl1251.53038
  4. [4] Abbassi M.T.K., Calvaruso G., Perrone D., Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics, Q. J. Math., 2011, 62(2), 259–288 http://dx.doi.org/10.1093/qmath/hap040 Zbl1226.53062
  5. [5] Apostolov V., Armstrong J., Drăghici T., Local rigidity of certain classes of almost Kähler 4-manifolds, Ann. Global Anal. Geom., 2002, 21(2), 151–176 http://dx.doi.org/10.1023/A:1014779405043 Zbl1032.53016
  6. [6] Benyounes M., Loubeau E., Wood C.M., Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl., 2007, 25(3), 322–334 http://dx.doi.org/10.1016/j.difgeo.2006.11.010 Zbl1128.53037
  7. [7] Calvaruso G., Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups, J. Geom. Phys., 2011, 61(2), 498–515 http://dx.doi.org/10.1016/j.geomphys.2010.11.001 Zbl1221.53093
  8. [8] Calvaruso G., De Leo B., Curvature properties of four-dimensional generalized symmetric spaces, J. Geom., 2008, 90, 30–46 http://dx.doi.org/10.1007/s00022-008-2046-8 Zbl1166.53317
  9. [9] Calvaruso G., Marinosci R.A., Homogeneous geodesics in five-dimensional generalized symmetric spaces, Balkan J. Geom. Appl., 2002, 8(1), 1–19 Zbl1060.53041
  10. [10] Calviño-Louzao E., García-Río E., Vázquez-Abal M.E., Vázquez-Lorenzo R., Local rigidity and nonrigidity of symplectic pairs, Ann. Global Anal. Geom. (in press), DOI: 10.1007/s10455-011-9279-8 Zbl1237.53026
  11. [11] Černý J., Kowalski O., Classification of generalized symmetric pseudo-Riemannian spaces of dimension n ≤ 4, Tensor (N.S.), 1982, 38, 256–267 Zbl0505.53024
  12. [12] Chaichi M., García-Río E., Matsushita Y., Curvature properties of four-dimensional Walker metrics, Classical Quantum Gravity, 2005, 22(3), 559–577 http://dx.doi.org/10.1088/0264-9381/22/3/008 Zbl1086.83031
  13. [13] Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A, 2005, 38(4), 841–850 http://dx.doi.org/10.1088/0305-4470/38/4/005 Zbl1068.53049
  14. [14] De Leo B., Marinosci R.A., Homogeneous geodesics of four-dimensional generalized symmetric pseudo-Riemannian spaces, Publ. Math. Debrecen, 2008, 73(3–4), 341–360 Zbl1199.53088
  15. [15] De Leo B., Van der Veken J., Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces, preprint available at https://perswww.kuleuven.be/~u0043959/Artikels Zbl1247.53076
  16. [16] Gil-Medrano O., Relationship between volume and energy of vector fields, Differential Geom. Appl., 2001, 15(2), 137–152 http://dx.doi.org/10.1016/S0926-2245(01)00053-5 Zbl1066.53068
  17. [17] Gil-Medrano O., Unit vector fields that are critical points of the volume and of the energy: characterization and examples, In: Complex, Contact and Symmetric Manifolds, Progr. Math., 234, Birkhäuser, Boston, 2005, 165–186 http://dx.doi.org/10.1007/0-8176-4424-5_12 
  18. [18] Gil-Medrano O., Gonzáles-Dávila J.C., Vanhecke L., Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math., 2001, 27(2), 377–409 Zbl1015.53030
  19. [19] Gil-Medrano O., Hurtado A., Spacelike energy of timelike unit vector fields on a Lorentzian manifold, J. Geom. Phys., 2004, 51(1), 82–100 http://dx.doi.org/10.1016/j.geomphys.2003.09.008 Zbl1076.53086
  20. [20] Gil-Medrano O., Hurtado A., Volume, energy and generalized energy of unit vector fields on Berger spheres: stability of Hopf vector fields, Proc. Roy. Soc. Edinburgh Sect. A, 2005, 135(4), 789–813 http://dx.doi.org/10.1017/S0308210500004121 Zbl1122.53037
  21. [21] González C., Chinea D., Homogeneous structures on generalized symmetric spaces, In: Proceedings of the 12th Portuguese-Spanish Conference on Mathematics, Vol. II, Braga, 1987, Univ. Minho, Braga, 1987, 572–578 (in Spanish) 
  22. [22] Han D.-S., Yim J.-W., Unit vector fields on spheres, which are harmonic maps, Math. Z., 1998, 227(1), 83–92 http://dx.doi.org/10.1007/PL00004369 Zbl0891.53024
  23. [23] Ishihara T., Harmonic sections of tangent bundles, J. Math. Tokushima Univ., 1979, 13, 23–27 Zbl0427.53019
  24. [24] Komrakov B. Jr., Einstein-Maxwell equation on four-dimensional homogeneous spaces, Lobachevskii J. Math., 2001, 8, 33–165 Zbl1011.83005
  25. [25] Kotschick D., Terzic S., On formality of generalized symmetric spaces, Math. Proc. Cambridge Philos. Soc., 2003, 134(3), 491–505 http://dx.doi.org/10.1017/S0305004102006540 Zbl1042.53035
  26. [26] Kowalski O., Generalized Symmetric Spaces, Lectures Notes in Math., 805, Springer, Berlin-Heidelberg-New York, 1980 Zbl0431.53042
  27. [27] Nouhaud O., Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B, 1977, 284(14), A815–A818 Zbl0349.53015
  28. [28] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983 
  29. [29] Terzich S., Real cohomology of generalized symmetric spaces, Fundam. Prikl. Mat., 2001, 7(1), 131–157 (in Russian) Zbl1010.57016
  30. [30] Terzich S., Pontryagin classes of generalized symmetric spaces, Mat. Zametki, 2001, 69(3–4), 613–621 (in Russian) 
  31. [31] Wiegmink G., Total bending of vector fields on Riemannian manifolds, Math. Ann., 1995, 303(2), 325–344 http://dx.doi.org/10.1007/BF01460993 Zbl0834.53034
  32. [32] Wood C.M., On the energy of a unit vector field, Geom. Dedicata, 1997, 64(3), 319–330 http://dx.doi.org/10.1023/A:1017976425512 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.