Some properties and applications of harmonic mappings

J. H. Sampson

Annales scientifiques de l'École Normale Supérieure (1978)

  • Volume: 11, Issue: 2, page 211-228
  • ISSN: 0012-9593

How to cite

top

Sampson, J. H.. "Some properties and applications of harmonic mappings." Annales scientifiques de l'École Normale Supérieure 11.2 (1978): 211-228. <http://eudml.org/doc/82013>.

@article{Sampson1978,
author = {Sampson, J. H.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Moduli of Riemann Surfaces; Unique Continuation Properties of Harmonic Mappings; Holomorphic Quadratic Differential; Aronszajn-Carleman Theorem; Maximum Principle; Geodesic Submanifolds; Harmonic Immersions; Conformal Metric on a Compact Riemann Surface; Smooth Deformations; Automorphic Varieties},
language = {eng},
number = {2},
pages = {211-228},
publisher = {Elsevier},
title = {Some properties and applications of harmonic mappings},
url = {http://eudml.org/doc/82013},
volume = {11},
year = {1978},
}

TY - JOUR
AU - Sampson, J. H.
TI - Some properties and applications of harmonic mappings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1978
PB - Elsevier
VL - 11
IS - 2
SP - 211
EP - 228
LA - eng
KW - Moduli of Riemann Surfaces; Unique Continuation Properties of Harmonic Mappings; Holomorphic Quadratic Differential; Aronszajn-Carleman Theorem; Maximum Principle; Geodesic Submanifolds; Harmonic Immersions; Conformal Metric on a Compact Riemann Surface; Smooth Deformations; Automorphic Varieties
UR - http://eudml.org/doc/82013
ER -

References

top
  1. [1] N. ARONSZAJN, A Unique Continuation Theorem for Solutions of Elliptic Partial Differential Equations or Inequalities (J. Math. pures et appl., T. 36, (1957, pp. 235-249). Zbl0084.30402MR19,1056c
  2. [2] L. BERS, F. JOHN and M. SCHECHTER, Partial Differential Equations, Interscience, New York, 1964. Zbl0126.00207MR29 #346
  3. [3] S. BOCHNER, Harmonic Surfaces in Riemannian Metric (Trans. Amer. Math. Soc., Vol. 47, 1940 pp. 146-154). Zbl0022.39703MR1,271dJFM66.0483.05
  4. [4] S. BOCHNER, Curvature in Hermitian Metric (Bull. Amer. Math. Soc., Vol. 53, 1947, pp. 179-195). Zbl0035.10403MR8,490d
  5. [5] S. BOCHNER, Curvature and Betti Numbers (Ann. Math., Vol. 49, 1948, pp. 379-390). Zbl0038.34401MR9,618d
  6. [6] A. BOREL, Les fonctions automorphes de plusieurs variables complexes (Bull. Soc. Math., T. 80, 1952, pp. 167-182). Zbl0048.06401MR14,1077a
  7. [7] C. EARLE and J. EELLS Jr., A Fiber Bundle Description of Teichmüller Theory (Compos. Math., Vol. 21, 1969, pp. 155-161). Zbl0185.32901
  8. [8] J. EELLS Jr. and L. LEMAIRE, A Report on Harmonic Maps (to appear in the Bull. London Math. Soc.). Zbl0401.58003
  9. [9] J. EELLS Jr. and J. H. SAMPSON, Harmonic Mappings of Riemannian Manifolds (Amer. J. Math., Vol. 86, 1964, pp. 109-160). Zbl0122.40102MR29 #1603
  10. [10] J. EELLS Jr. and J. C. WOOD, Restrictions on Harmonic Maps of Surfaces (Topology, Vol. 15, 1976, 263-266). Zbl0328.58008MR54 #8720
  11. [11] L. P. EISENHART, Riemannian Geometry, Princeton, 1949. Zbl0041.29403MR11,687g
  12. [12] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N. H., 1964. Zbl0144.34903MR31 #6062
  13. [13] A. FRIEDMAN, Interior Estimates for Parabolic Systems of Partial Differential Equations (J. Maths. and Mech., Vol. 7, 1958, pp. 393-418). Zbl0082.30402MR21 #7362
  14. [13 a] M. GERSTENHABER and H. E. RAUCH, On Extremal quasi-conformal Mappings. I and II (Proc. Nat. Acad. Sc., Vol. 40, 1954, pp. 808-816 and 991-994). Zbl0056.07502MR16,349a
  15. [14] R. S. HAMILTON, Harmonic Mappings of Manifolds with Boundary (Springer Lecture Notes in Mathematics, No. 471, 1975, New York). Zbl0308.35003MR58 #2872
  16. [15] P. HARTMAN, On Homotopic Harmonic Maps (Can. J. Math., Vol. 19, 1967, pp. 673-687). Zbl0148.42404MR35 #4856
  17. [16] E. HEINZ, Über gewisse elliptische Systeme von Differentialgleichungen zweiter Ordnung mit Anwendung auf die Monge-Ampèresche Gleichung (Math. Ann., Vol. 131, 1956, pp. 411-428). Zbl0072.31103MR23 #A1131
  18. [17] S. HELGASON, Differential Geometry and Symmetric Spaces. Academic Press, New York, 1962. Zbl0111.18101MR26 #2986
  19. [18] A. HURWITZ, Über algebraische Gebilde u. s. w., Gesammelte Abhandlungen. 
  20. [19] J. KAZDAN and F. W. WARNER, Curvature Functions for Compact 2-manifolds (Ann. Math., Vol. 99, 1974, pp. 14-47). Zbl0273.53034MR49 #7949
  21. [20] S. KOBAYASHI, Intrinsic Distances, Measures and Geometric Theory (Bull. Amer. Math. Soc., Vol. 82, 1976, pp. 357-416). Zbl0346.32031MR54 #3032
  22. [21] S. LANG, Integral Points on Curves (Publ. Math., No. 6, I.H.E.S., Paris, 1960, pp. 27-43). Zbl0112.13402MR24 #A86
  23. [21 a] S. LANG, Some Theorems and Conjectures in Diophantine Equations (Bull. Amer. Math. Soc., Vol. 66, 1960, pp. 240-249). Zbl0095.26301MR22 #9469
  24. [22] M. LEES and M. H. PROTTER, Unique Continuation for Parabolic Differential Equations and Inequalities (Duke Math. J., Vol. 28, 1961, pp. 369-382). Zbl0143.33301MR25 #4254
  25. [23] L. NIRENBERG, A Strong Maximum Principle for Parabolic Equations (Comm. Pure and Appl. Maths., Vol. 6, 1953, pp. 167-177). Zbl0050.09601MR14,1089e
  26. [23 a] O. NOUHAUD, Déformations infinitésimales harmoniques (C. R. Acad. Sc., T. 275, série A, 1972, pp. 999-1001 and 1103-1106). Zbl0243.53022MR57 #4025a
  27. [24] H. E. RAUCH, On the Transcendental Moduli of Algebraic Riemann Surfaces (Proc. Nat. Acad. Sc., Vol. 41, 1965, pp. 42-49, 176-180 and 231-238). Zbl0067.30502MR17,251e
  28. [25] R. SCHOEN and S. T. YAU, Univalent Harmonic Maps of Surfaces [Invent. Math. (to appear)]. 
  29. [26] J. H. SAMPSON, A Note on Automorphic Functions (Proc. Nat. Acad. Sc., Vol. 38, 1952, pp. 895-898). Zbl0048.06402MR14,633c
  30. [27] K. SHIBATA, On the Existence of a Harmonic Mapping (Osaka Math. J., Vol. 15, 1963, pp. 173-211). Zbl0132.06004MR28 #1289
  31. [28] R. T. SMITH, Harmonic Mappings of Spheres (Dissertation, Warwick University, 1972). Zbl0279.53055
  32. [29] J. C. WOOD, Singularities of Harmonic Maps and Applications of the Gauss-Bonnet Formula [Amer. J. Math. (to appear, at last)]. Zbl0375.35022
  33. [30] J. C. WOOD, Harmonic Maps and Complex Analysis (Proc. of a Summer Course in Complex Analysis, Vol. III, Trieste, 1975, pp. 289-308). Zbl0346.53030MR58 #31207

Citations in EuDML Documents

top
  1. Mohamed Tahar Kadaoui Abbassi, Giovanni Calvaruso, Domenico Perrone, Some examples of harmonic maps for g -natural metrics
  2. Luc Lemaire, Existence des applications harmoniques et courbure des variétés
  3. James A. Carlson, Domingo Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces
  4. Kenshô Takegoshi, Energy estimates and Liouville theorems for harmonic maps
  5. Vincent Koziarz, Julien Maubon, Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.