Necessary condition for measures which are ( L q , L p ) multipliers

Bérenger Akon Kpata[1]; Ibrahim Fofana[1]; Konin Koua[1]

  • [1] UFR Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan 22 Côte d’Ivoire

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 2, page 339-353
  • ISSN: 1259-1734

Abstract

top
Let G be a locally compact group and ρ the left Haar measure on G . Given a non-negative Radon measure μ , we establish a necessary condition on the pairs q , p for which μ is a multiplier from L q G , ρ to L p G , ρ . Applied to n , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].When G is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.

How to cite

top

Kpata, Bérenger Akon, Fofana, Ibrahim, and Koua, Konin. "Necessary condition for measures which are $(L^{q},L^{p})$ multipliers." Annales mathématiques Blaise Pascal 16.2 (2009): 339-353. <http://eudml.org/doc/10584>.

@article{Kpata2009,
abstract = {Let $G$ be a locally compact group and $\rho $ the left Haar measure on $G$. Given a non-negative Radon measure $\mu $, we establish a necessary condition on the pairs $\left( q,\ p\right) $ for which $\mu $ is a multiplier from $L^\{q\}\left( G,\ \rho \right) $ to $L^\{p\}\left( G,\ \rho \right) $. Applied to $\mathbb\{R\}^\{n\}$, our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].When $G$ is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.},
affiliation = {UFR Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan 22 Côte d’Ivoire; UFR Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan 22 Côte d’Ivoire; UFR Mathématiques et Informatique Université de Cocody 22 BP 582 Abidjan 22 Côte d’Ivoire},
author = {Kpata, Bérenger Akon, Fofana, Ibrahim, Koua, Konin},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Cantor-Lebesgue measure; $L^\{q\}$-improving measure; non-negative Radon measure; Cantor–Lebesgue measure; Radon measure; multiplier},
language = {eng},
month = {7},
number = {2},
pages = {339-353},
publisher = {Annales mathématiques Blaise Pascal},
title = {Necessary condition for measures which are $(L^\{q\},L^\{p\})$ multipliers},
url = {http://eudml.org/doc/10584},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Kpata, Bérenger Akon
AU - Fofana, Ibrahim
AU - Koua, Konin
TI - Necessary condition for measures which are $(L^{q},L^{p})$ multipliers
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 339
EP - 353
AB - Let $G$ be a locally compact group and $\rho $ the left Haar measure on $G$. Given a non-negative Radon measure $\mu $, we establish a necessary condition on the pairs $\left( q,\ p\right) $ for which $\mu $ is a multiplier from $L^{q}\left( G,\ \rho \right) $ to $L^{p}\left( G,\ \rho \right) $. Applied to $\mathbb{R}^{n}$, our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].When $G$ is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.
LA - eng
KW - Cantor-Lebesgue measure; $L^{q}$-improving measure; non-negative Radon measure; Cantor–Lebesgue measure; Radon measure; multiplier
UR - http://eudml.org/doc/10584
ER -

References

top
  1. William Beckner, Svante Janson, David Jerison, Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (1983), 32-43, Wadsworth, Belmont, CA MR730056
  2. A. Bonami, Étude des coefficients de Fourier des fonctions de L p G , Ann. Inst. Fourier (Grenoble) 20 (1970), 335-402 Zbl0195.42501MR283496
  3. M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana vol. 1, n. ∘ 4 (1985), 79-83 Zbl0644.42011MR850410
  4. K. J Falconer, The geometry of fractal sets, (1985), Cambridge University Press, London/New York Zbl0587.28004MR867284
  5. K. J Falconer, Fractal geometry, (1990), Wiley, New York Zbl0689.28003MR1102677
  6. I. Fofana, Continuité de l’intégrale fractionnaire et espaces L q , l p α , C. R. A. S. Paris t. 308, série I (1989), 525-527 Zbl0669.42004MR1001045
  7. I. Fofana, Transformation de Fourier dans L q , l p α et M p , α , Afrika matematika série 3, vol. 5 (1995), 53-76 Zbl0885.42005MR1431325
  8. I. Fofana, Espaces L q , l p α et Continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood, Afrika matematika série 3, vol. 12 (2001), 23-37 Zbl1026.42020MR1876792
  9. C. C. Graham, K. Hare, D. Ritter, The size of L p -improving measures, J. Funct. Anal. 84 (1989), 472-495 Zbl0678.43001MR1001469
  10. R. Larsen, An introduction to the theory of multipliers, (1971), Springer-Verlag, Berlin, Heidelberg, New York Zbl0213.13301MR435738
  11. K-S. Lau, Fractal Measures and Mean ρ -Variations, J. Funct. Anal. 108 (1992), 427-457 Zbl0767.28007MR1176682
  12. D. M. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117 Zbl0501.42007MR679392
  13. D. M. Oberlin, Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc. 129 (2000), 517-526 Zbl0972.42009MR1780502
  14. D. M. Oberlin, Affine dimension : measuring the vestiges of curvature, Michigan Math. J. 51 (2003), 13-26 Zbl1035.53023MR1960918
  15. D. M. Oberlin, A convolution property of the Cantor-Lebesgue measure II, Colloq. Math. 97 (2003), 23-28 Zbl1095.42007MR2010539
  16. D. Ritter, Most Riesz product measures are L p -improving, Proc. Amer. Math. Soc. 97 (1986), 291-295 Zbl0593.43002MR835883
  17. D. Ritter, Some singular measures on the circle which improve L p spaces, Colloq. Math. 52 (1987), 133-144 Zbl0637.43002MR891505
  18. E. M. Stein, Harmonic Analysis on n , 13 (1976), 97-135, Studies in Harmonic Analysis, MAA Studies in Mathematics Zbl0337.42016MR461002
  19. A. Zygmund, Trigonometric series. 2nd ed. Vol. I, (1959), Cambridge University Press, New York Zbl0085.05601MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.