On the Global Existence of Weak Solutions to A Nonlinear Variational Wave Equation
Ping Zhang[1]; Yuxi Zheng[2]
- [1] Academy of Mathematics and System Sciences, CAS, Beijing 100080, China
- [2] Department of Mathematics, Penn State University, PA 16802
Journées Équations aux dérivées partielles (2004)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topHow to cite
topZhang, Ping, and Zheng, Yuxi. "On the Global Existence of Weak Solutions to A Nonlinear Variational Wave Equation." Journées Équations aux dérivées partielles (2004): 1-12. <http://eudml.org/doc/10591>.
@article{Zhang2004,
affiliation = {Academy of Mathematics and System Sciences, CAS, Beijing 100080, China; Department of Mathematics, Penn State University, PA 16802},
author = {Zhang, Ping, Zheng, Yuxi},
journal = {Journées Équations aux dérivées partielles},
keywords = {existence; regularity properties},
language = {eng},
month = {6},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the Global Existence of Weak Solutions to A Nonlinear Variational Wave Equation},
url = {http://eudml.org/doc/10591},
year = {2004},
}
TY - JOUR
AU - Zhang, Ping
AU - Zheng, Yuxi
TI - On the Global Existence of Weak Solutions to A Nonlinear Variational Wave Equation
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
LA - eng
KW - existence; regularity properties
UR - http://eudml.org/doc/10591
ER -
References
top- R. J. DiPerna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98(1989), pp. 511–547. Zbl0696.34049MR1022305
- R. J. DiPerna and A. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108(1987), pp. 667–689. Zbl0626.35059MR877643
- P. Gerard, Microlocal defect measures, Comm. in Partial Differential Equations, 16 (1991), pp. 1761–1794. Zbl0770.35001MR1135919
- R. T. Glassey, J. K. Hunter, and Yuxi Zheng, Singularities in a nonlinear variational wave equation, J. Differential Equations, 129(1996), pp. 49–78. Zbl0879.35107MR1400796
- J. K. Hunter and R. A. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), pp. 1498–1521. Zbl0761.35063MR1135995
- J. K. Hunter and Yuxi Zheng, On a nonlinear hyperbolic variational equation I and II, Arch. Rat. Mech. Anal., 129 (1995), pp. 305-353 and 355-383. Zbl0834.35085
- J. L. Joly, G. Métivier, and J. Rauch , Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc., 347(1995), pp. 3921–3970. Zbl0857.35087MR1297533
- P. L. Lions , Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models, Lecture series in mathematics and its applications, V. 6, Clarendon Press , Oxford, 1998. Zbl0908.76004MR1637634
- L. Tartar, H-measures, a new approach for studying homogenisation oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburg Sect. A,115 (1990), pp.193-230. Zbl0774.35008MR1069518
- Ping Zhang and Yuxi Zheng, Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations, 26 (2001), pp. 381-420. Zbl0989.35112MR1842038
- Ping Zhang and Yuxi Zheng, Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rat. Mech. Anal., 155 (2000), pp. 49-83. Zbl0982.35062MR1799274
- Ping Zhang and Yuxi Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Rat. Mech. Anal., 166 (2003), pp. 303-319. Zbl1029.35173MR1961443
- Ping Zhang and Yuxi Zheng, Weak Solutions to A Nonlinear Variational Wave Equation with General Data, (to appear Ann. Inst. H. Poincaré Anal. Non Linéaire ). Zbl1082.35129MR2124163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.