Weak solutions to a nonlinear variational wave equation with general data
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 2, page 207-226
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZhang, Ping, and Zheng, Yuxi. "Weak solutions to a nonlinear variational wave equation with general data." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 207-226. <http://eudml.org/doc/78654>.
@article{Zhang2005,
author = {Zhang, Ping, Zheng, Yuxi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Existence; Regularity; Young measure; Wave equation; Renormalization},
language = {eng},
number = {2},
pages = {207-226},
publisher = {Elsevier},
title = {Weak solutions to a nonlinear variational wave equation with general data},
url = {http://eudml.org/doc/78654},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Zhang, Ping
AU - Zheng, Yuxi
TI - Weak solutions to a nonlinear variational wave equation with general data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 207
EP - 226
LA - eng
KW - Existence; Regularity; Young measure; Wave equation; Renormalization
UR - http://eudml.org/doc/78654
ER -
References
top- [1] DiPerna R.J., Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
- [2] DiPerna R.J., Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys.108 (1987) 667-689. Zbl0626.35059MR877643
- [3] Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, Amer. Math. Soc., Providence, RI, 1990. Zbl0698.35004MR1034481
- [4] Gerard P., Microlocal defect measures, Comm. Partial Differential Equations16 (1991) 1761-1794. Zbl0770.35001MR1135919
- [5] Glassey R.T., Hunter J.K., Zheng Y., Singularities in a nonlinear variational wave equation, J. Differential Equations129 (1996) 49-78. Zbl0879.35107MR1400796
- [6] Glassey R.T., Hunter J.K., Zheng Y., Singularities and oscillations in a nonlinear variational wave equation, in: IMA, vol. 91, Springer, 1997. Zbl0958.35084MR1601273
- [7] Grundland A., Infeld E., A family of nonlinear Klein–Gordon equations and their solutions, J. Math. Phys.33 (1992) 2498-2503. Zbl0764.35088MR1167950
- [8] Hunter J.K., Saxton R.A., Dynamics of director fields, SIAM J. Appl. Math.51 (1991) 1498-1521. Zbl0761.35063MR1135995
- [9] Hunter J.K., Zheng Y., On a nonlinear hyperbolic variational equation I and II, Arch. Rational Mech. Anal.129 (1995) 305-353, and 355–383. Zbl0834.35085
- [10] Jiang S., Zhang P., On the 3-D axi-symmetric solutions to the compressible Navier–Stokes equations, J. Math. Pures Appl. (9)82 (2003) 949-973. Zbl1109.35088MR2005201
- [11] Joly J.L., Métivier G., Rauch J., Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc.347 (1995) 3921-3970. Zbl0857.35087MR1297533
- [12] Lions P.L., Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models, Lecture Series in Mathematics and its Applications, vol. 3, Clarendon Press, Oxford, 1996. Zbl0866.76002MR1422251
- [13] Lions P.L., Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models, Lecture Series in Mathematics and its Applications, vol. 6, Clarendon Press, Oxford, 1998. Zbl0908.76004MR1637634
- [14] Saxton R.A., Dynamic instability of the liquid crystal director, in: Lindquist W.B. (Ed.), Current Progress in Hyperbolic Systems, Contemp. Math., vol. 100, Amer. Math. Soc., Providence, RI, 1989, pp. 325-330. Zbl0702.35180MR1033527
- [15] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Res. Notes Math., vol. 39, Pitman, 1979. Zbl0437.35004MR584398
- [16] Tartar L., H-measures, a new approach for studying homogenisation oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburg Sect. A115 (1990) 193-230. Zbl0774.35008MR1069518
- [17] Young L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. Zbl0177.37801MR259704
- [18] Zhang P., Zheng Y., Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations26 (2001) 381-420. Zbl0989.35112MR1842038
- [19] Zhang P., Zheng Y., Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rational Mech. Anal.155 (2000) 49-83. Zbl0982.35062MR1799274
- [20] Zhang P., Zheng Y., Singular and rarefactive solutions to a nonlinear variational wave equation, Chinese Ann. Math. Ser. B22B (2000) 159-170. Zbl0980.35137MR1835396
- [21] Zhang P., Zheng Y., Weak solutions to a nonlinear variational wave equation, Arch. Rational Mech. Anal.166 (2003) 303-319. Zbl1029.35173MR1961443
- [22] Zorski H., Infeld E., New soliton equations for dipole chains, Phys. Rev. Lett.68 (1992) 1180-1183.
Citations in EuDML Documents
top- Ping Zhang, Yuxi Zheng, On the Global Existence of Weak Solutions to A Nonlinear Variational Wave Equation
- Ping Zhang, Weak solutions to a nonlinear variational wave equation and some related problems
- Nader Masmoudi, Ping Zhang, Global solutions to vortex density equations arising from sup-conductivity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.