Weak solutions to a nonlinear variational wave equation with general data

Ping Zhang; Yuxi Zheng

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 2, page 207-226
  • ISSN: 0294-1449

How to cite

top

Zhang, Ping, and Zheng, Yuxi. "Weak solutions to a nonlinear variational wave equation with general data." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 207-226. <http://eudml.org/doc/78654>.

@article{Zhang2005,
author = {Zhang, Ping, Zheng, Yuxi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Existence; Regularity; Young measure; Wave equation; Renormalization},
language = {eng},
number = {2},
pages = {207-226},
publisher = {Elsevier},
title = {Weak solutions to a nonlinear variational wave equation with general data},
url = {http://eudml.org/doc/78654},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Zhang, Ping
AU - Zheng, Yuxi
TI - Weak solutions to a nonlinear variational wave equation with general data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 207
EP - 226
LA - eng
KW - Existence; Regularity; Young measure; Wave equation; Renormalization
UR - http://eudml.org/doc/78654
ER -

References

top
  1. [1] DiPerna R.J., Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. Zbl0696.34049MR1022305
  2. [2] DiPerna R.J., Majda A., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys.108 (1987) 667-689. Zbl0626.35059MR877643
  3. [3] Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, Amer. Math. Soc., Providence, RI, 1990. Zbl0698.35004MR1034481
  4. [4] Gerard P., Microlocal defect measures, Comm. Partial Differential Equations16 (1991) 1761-1794. Zbl0770.35001MR1135919
  5. [5] Glassey R.T., Hunter J.K., Zheng Y., Singularities in a nonlinear variational wave equation, J. Differential Equations129 (1996) 49-78. Zbl0879.35107MR1400796
  6. [6] Glassey R.T., Hunter J.K., Zheng Y., Singularities and oscillations in a nonlinear variational wave equation, in: IMA, vol. 91, Springer, 1997. Zbl0958.35084MR1601273
  7. [7] Grundland A., Infeld E., A family of nonlinear Klein–Gordon equations and their solutions, J. Math. Phys.33 (1992) 2498-2503. Zbl0764.35088MR1167950
  8. [8] Hunter J.K., Saxton R.A., Dynamics of director fields, SIAM J. Appl. Math.51 (1991) 1498-1521. Zbl0761.35063MR1135995
  9. [9] Hunter J.K., Zheng Y., On a nonlinear hyperbolic variational equation I and II, Arch. Rational Mech. Anal.129 (1995) 305-353, and 355–383. Zbl0834.35085
  10. [10] Jiang S., Zhang P., On the 3-D axi-symmetric solutions to the compressible Navier–Stokes equations, J. Math. Pures Appl. (9)82 (2003) 949-973. Zbl1109.35088MR2005201
  11. [11] Joly J.L., Métivier G., Rauch J., Focusing at a point and absorption of nonlinear oscillations, Trans. Amer. Math. Soc.347 (1995) 3921-3970. Zbl0857.35087MR1297533
  12. [12] Lions P.L., Mathematical Topics in Fluid Mechanics, vol. 1, Incompressible Models, Lecture Series in Mathematics and its Applications, vol. 3, Clarendon Press, Oxford, 1996. Zbl0866.76002MR1422251
  13. [13] Lions P.L., Mathematical Topics in Fluid Mechanics, vol. 2, Compressible Models, Lecture Series in Mathematics and its Applications, vol. 6, Clarendon Press, Oxford, 1998. Zbl0908.76004MR1637634
  14. [14] Saxton R.A., Dynamic instability of the liquid crystal director, in: Lindquist W.B. (Ed.), Current Progress in Hyperbolic Systems, Contemp. Math., vol. 100, Amer. Math. Soc., Providence, RI, 1989, pp. 325-330. Zbl0702.35180MR1033527
  15. [15] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Res. Notes Math., vol. 39, Pitman, 1979. Zbl0437.35004MR584398
  16. [16] Tartar L., H-measures, a new approach for studying homogenisation oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburg Sect. A115 (1990) 193-230. Zbl0774.35008MR1069518
  17. [17] Young L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1969. Zbl0177.37801MR259704
  18. [18] Zhang P., Zheng Y., Rarefactive solutions to a nonlinear variational wave equation, Comm. Partial Differential Equations26 (2001) 381-420. Zbl0989.35112MR1842038
  19. [19] Zhang P., Zheng Y., Existence and uniqueness of solutions to an asymptotic equation of a variational wave equation with general data, Arch. Rational Mech. Anal.155 (2000) 49-83. Zbl0982.35062MR1799274
  20. [20] Zhang P., Zheng Y., Singular and rarefactive solutions to a nonlinear variational wave equation, Chinese Ann. Math. Ser. B22B (2000) 159-170. Zbl0980.35137MR1835396
  21. [21] Zhang P., Zheng Y., Weak solutions to a nonlinear variational wave equation, Arch. Rational Mech. Anal.166 (2003) 303-319. Zbl1029.35173MR1961443
  22. [22] Zorski H., Infeld E., New soliton equations for dipole chains, Phys. Rev. Lett.68 (1992) 1180-1183. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.