Transport equation and Cauchy problem for vector fields and applications
- [1] Scuola Normale Superiore, Pisa
Journées Équations aux dérivées partielles (2004)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topHow to cite
topAmbrosio, Luigi. "Transport equation and Cauchy problem for $BV$ vector fields and applications." Journées Équations aux dérivées partielles (2004): 1-11. <http://eudml.org/doc/10593>.
@article{Ambrosio2004,
affiliation = {Scuola Normale Superiore, Pisa},
author = {Ambrosio, Luigi},
journal = {Journées Équations aux dérivées partielles},
keywords = {DiPerna-Lions theory},
language = {eng},
month = {6},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Transport equation and Cauchy problem for $BV$ vector fields and applications},
url = {http://eudml.org/doc/10593},
year = {2004},
}
TY - JOUR
AU - Ambrosio, Luigi
TI - Transport equation and Cauchy problem for $BV$ vector fields and applications
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
LA - eng
KW - DiPerna-Lions theory
UR - http://eudml.org/doc/10593
ER -
References
top- M.Aizenman:On vector fields as generators of flows: a counterexample to Nelson’s conjecture. Ann. Math., 107 (1978), 287–296. Zbl0394.28012MR482853
- G.Alberti:Rank-one properties for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239–274. Zbl0791.26008MR1215412
- G.Alberti & L.Ambrosio:A geometric approach to monotone functions in . Math. Z., 230 (1999), 259–316. Zbl0934.49025MR1676726
- G.Alberti: Personal communication.
- F.J.Almgren:The theory of varifolds – A variational calculus in the large. Princeton University Press, 1972.
- L.Ambrosio, N.Fusco & D.Pallara:Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. Zbl0957.49001MR1857292
- L.Ambrosio:Transport equation and Cauchy problem for vector fields. To appear on Inventiones Math. . Zbl1075.35087MR2096794
- L.Ambrosio & C.De Lellis:Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions. International Mathematical Research Notices, 41 (2003), 2205–2220. Zbl1061.35048MR2000967
- L.Ambrosio, F.Bouchut & C.De Lellis:Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions. To appear on Comm. PDE, and available at http://cvgmt.sns.it. Zbl1072.35116
- L.Ambrosio, G.Crippa & S.Maniglia:Traces and fine properties of a class of vector fields and applications. Preprint, 2004. Zbl1091.35007
- L.Ambrosio:Lecture Notes on transport equation and Cauchy problem for vector fields and applications. Available at http://cvgmt.sns.it. Zbl1075.35087
- L.Ambrosio, N.Gigli & G.Savaré:Gradient flows in metric spaces and in the Wasserstein space of probability measures. Birkhäuser, to appear. Zbl1090.35002MR2129498
- J.-D.Benamou & Y.Brenier:Weak solutions for the semigeostrophic equation formulated as a couples Monge-Ampere transport problem. SIAM J. Appl. Math., 58 (1998), 1450–1461. Zbl0915.35024MR1627555
- F.Bouchut & F.James:One dimensional transport equation with discontinuous coefficients. Nonlinear Analysis, 32 (1998), 891–933. Zbl0989.35130MR1618393
- F.Bouchut:Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal., 157 (2001), 75–90. Zbl0979.35032MR1822415
- A.Bressan:An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110 (2003), 103–117. Zbl1114.35123MR2033003
- I.Capuzzo Dolcetta & B.Perthame:On some analogy between different approaches to first order PDE’s with nonsmooth coefficients. Adv. Math. Sci Appl., 6 (1996), 689–703. Zbl0865.35032MR1411988
- A.Cellina:On uniqueness almost everywhere for monotonic differential inclusions. Nonlinear Analysis, TMA, 25 (1995), 899–903. Zbl0837.34023MR1350714
- A.Cellina & M.Vornicescu:On gradient flows. Journal of Differential Equations, 145 (1998), 489–501. Zbl0927.37007MR1620979
- G.-Q.Chen & H.Frid:Extended divergence-measure fields and the Euler equation of gas dynamics. Comm. Math. Phys., 236 (2003), 251–280. Zbl1036.35125MR1981992
- F.Colombini & N.Lerner:Uniqueness of continuous solutions for vector fields. Duke Math. J., 111 (2002), 357–384. Zbl1017.35029MR1882138
- F.Colombini & N.Lerner:Uniqueness of solutions for a class of conormal vector fields. Preprint, 2003. Zbl1064.35033
- F.Colombini, T.Luo & J.Rauch:Uniqueness and nonuniqueness for nonsmooth divergence-free transport. Preprint, 2003. Zbl1065.35089
- M.Cullen & W.Gangbo:A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Rational Mech. Anal., 156 (2001), 241–273. Zbl0985.76008MR1816477
- M.Cullen & M.Feldman:Lagrangian solutions of semigeostrophic equations in physical space. To appear. Zbl1097.35004MR2215268
- C.Dafermos:Hyperbolic conservation laws in continuum physics. Springer Verlag, 2000. Zbl0940.35002MR1763936
- N.De Pauw:Non unicité des solutions bornées pour un champ de vecteurs en dehors d’un hyperplan. C.R. Math. Sci. Acad. Paris, 337 (2003), 249–252. Zbl1024.35029MR2009116
- R.J. Di Perna & P.L.Lions:Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), 511–547. Zbl0696.34049MR1022305
- M.Hauray:On Liouville transport equation with potential in . (2003) Di prossima pubblicazione su Comm. in PDE.
- M.Hauray:On two-dimensional Hamiltonian transport equations with coefficients. (2003) Di prossima pubblicazione su Ann. Nonlinear Analysis IHP. Zbl1028.35148
- L.V.Kantorovich:On the transfer of masses. Dokl. Akad. Nauk. SSSR, 37 (1942), 227–229.
- B.L.Keyfitz & H.C.Kranzer:A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal. 1980, 72, 219–241. Zbl0434.73019MR549642
- C.Le Bris & P.L.Lions:Renormalized solutions of some transport equations with partially velocities and applications. Annali di Matematica, 183 (2004), 97–130. Zbl1170.35364MR2044334
- N.Lerner:Transport equations with partially velocities. Preprint, 2004. Zbl1170.35362
- P.L.Lions:Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833–838. Zbl0919.34028MR1648524
- G.Petrova & B.Popov:Linear transport equation with discontinuous coefficients. Comm. PDE, 24 (1999), 1849–1873. Zbl0992.35104MR1708110
- F.Poupaud & M.Rascle:Measure solutions to the liner multidimensional transport equation with non-smooth coefficients. Comm. PDE, 22 (1997), 337–358. Zbl0882.35026MR1434148
- L.C.Young:Lectures on the calculus of variations and optimal control theory, Saunders, 1969. Zbl0177.37801MR259704
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.