# An ill posed Cauchy problem for a hyperbolic system in two space dimensions

Rendiconti del Seminario Matematico della Università di Padova (2003)

- Volume: 110, page 103-117
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topBressan, Alberto. "An ill posed Cauchy problem for a hyperbolic system in two space dimensions." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 103-117. <http://eudml.org/doc/108609>.

@article{Bressan2003,

author = {Bressan, Alberto},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

language = {eng},

pages = {103-117},

publisher = {Seminario Matematico of the University of Padua},

title = {An ill posed Cauchy problem for a hyperbolic system in two space dimensions},

url = {http://eudml.org/doc/108609},

volume = {110},

year = {2003},

}

TY - JOUR

AU - Bressan, Alberto

TI - An ill posed Cauchy problem for a hyperbolic system in two space dimensions

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 2003

PB - Seminario Matematico of the University of Padua

VL - 110

SP - 103

EP - 117

LA - eng

UR - http://eudml.org/doc/108609

ER -

## References

top- [1] A. BRESSAN, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. Zbl0997.35002MR1816648
- [2] C. DAFERMOS, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin 1999. Zbl0940.35002MR1763936
- [3] R. DIPERNA - P. L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-517. Zbl0696.34049MR1022305
- [4] S. KRUZHKOV, First-order quasilinear equations with several space variables, Math. USSR Sbornik, 10 (1970), pp. 217-273. Zbl0215.16203
- [5] E. Y. PANOV, On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws, Sbornik: Mathematics, 191 (2000), pp. 121-150. Zbl0954.35107MR1753495
- [6] D. SERRE, Systems of Conservation Laws I, II, Cambridge University Press, 2000. Zbl0936.35001MR1775057

## Citations in EuDML Documents

top- Alberto Bressan, A lemma and a conjecture on the cost of rearrangements
- Luigi Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields and applications
- Luigi Ambrosio, Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
- Luigi Ambrosio, Gianluca Crippa, Stefania Maniglia, Traces and fine properties of a $BD$ class of vector fields and applications
- Alberto Bressan, Some remarks on multidimensional systems of conservation laws
- Gianluca Crippa, The Ordinary Differential Equation with non-Lipschitz Vector Fields
- Luigi Ambrosio, The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.