The Calderón problem with partial data
- [1] CMLS, École Polytechnique, F-91128 Palaiseau cedex (UMR 7640, CNRS)
Journées Équations aux dérivées partielles (2004)
- page 1-9
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes. "The Calderón problem with partial data." Journées Équations aux dérivées partielles (2004): 1-9. <http://eudml.org/doc/10601>.
@article{Sjöstrand2004,
abstract = {We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension $n\ge 3$, the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem.},
affiliation = {CMLS, École Polytechnique, F-91128 Palaiseau cedex (UMR 7640, CNRS)},
author = {Sjöstrand, Johannes},
journal = {Journées Équations aux dérivées partielles},
keywords = {Dirichlet to Neumann map; Carleman estimates; analytic microlocal analysis},
language = {eng},
month = {6},
pages = {1-9},
publisher = {Groupement de recherche 2434 du CNRS},
title = {The Calderón problem with partial data},
url = {http://eudml.org/doc/10601},
year = {2004},
}
TY - JOUR
AU - Sjöstrand, Johannes
TI - The Calderón problem with partial data
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 9
AB - We describe a joint work with C.E. Kenig and G. Uhlmann [9] where we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension $n\ge 3$, the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem.
LA - eng
KW - Dirichlet to Neumann map; Carleman estimates; analytic microlocal analysis
UR - http://eudml.org/doc/10601
ER -
References
top- A. L. Bukhgeim, G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. PDE, 27(3,4)(2002), 653–668. Zbl0998.35063MR1900557
- N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180(1)(1998), 1–29. Zbl0918.35081MR1618254
- A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, (1980), 65-73. MR590275
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
- J.J. Duistermaat, L. Hörmander, Fourier integral operators II, Acta Mathematica 128(1972), 183-269. Zbl0232.47055MR388464
- A. Greenleaf and G. Uhlmann, Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform, Duke Math. J. 108(2001), 599-617. Zbl1013.35085MR1838663
- L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24(1971), 671–704. Zbl0226.35019MR294849
- H. Isozaki and G. Uhlmann, Hyperbolic geometry and the Dirichlet-to-Neumann map, Advances in Math., to appear. Zbl1062.35172
- C.E. Kenig, J. Sjöstrand, G. Uhlmann, The Calderón problem with partial data, preprint http://xxx.lanl.gov/abs/math.AP/0405486 . Zbl1127.35079
- G. Lebeau, L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. P.D.E. 20(1-2)(1995), 335–356. Zbl0819.35071MR1312710
- R. Novikov, Multidimensional inverse spectral problems for the equation , Funkt. An. Ego Pril. 22(4)(1988), 11–12, and Funct. An. and its Appl., 22(4)(1988), 263–272. Zbl0689.35098MR976992
- M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudodifferential equations, Springer Lecture Notes in Math. 287 Zbl0277.46039MR420735
- J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982). Zbl0524.35007MR699623
- J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125(1987), 153–169. Zbl0625.35078MR873380
- G. Uhlmann, Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in “Harmonic Analysis and Partial Differential Equations", University of Chicago Press (1999), 295-345, edited by M. Christ, C. Kenig and C. Sadosky. Zbl0963.35203MR1743870
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.