Schrödinger operator with magnetic field in domain with corners

Virginie Bonnaillie Noël[1]

  • [1] IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Journées Équations aux dérivées partielles (2005)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.

How to cite

top

Bonnaillie Noël, Virginie. "Schrödinger operator with magnetic field in domain with corners." Journées Équations aux dérivées partielles (2005): 1-12. <http://eudml.org/doc/10609>.

@article{BonnaillieNoël2005,
abstract = {We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.},
affiliation = {IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France},
author = {Bonnaillie Noël, Virginie},
journal = {Journées Équations aux dérivées partielles},
keywords = {Schrödinger operator; essential spectrum; domains with corners},
language = {eng},
month = {6},
pages = {1-12},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Schrödinger operator with magnetic field in domain with corners},
url = {http://eudml.org/doc/10609},
year = {2005},
}

TY - JOUR
AU - Bonnaillie Noël, Virginie
TI - Schrödinger operator with magnetic field in domain with corners
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 12
AB - We present here a simplified version of results obtained with F. Alouges, M. Dauge, B. Helffer and G. Vial (cf [4, 7, 9]). We analyze the Schrödinger operator with magnetic field in an infinite sector. This study allows to determine accurate approximation of the low-lying eigenpairs of the Schrödinger operator in domains with corners. We complete this analysis with numerical experiments.
LA - eng
KW - Schrödinger operator; essential spectrum; domains with corners
UR - http://eudml.org/doc/10609
ER -

References

top
  1. Agmon, S.Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators, vol. 29 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1982. Zbl0503.35001MR745286
  2. Alouges, F., and Bonnaillie, V. Analyse numérique de la supraconductivité. C. R. Math. Acad. Sci. Paris 337, 8 (2003), 543–548. Zbl1035.65121MR2017694
  3. Bernoff, A., and Sternberg, P. Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39, 3 (1998), 1272–1284. Zbl1056.82523MR1608449
  4. Bonnaillie, V.Analyse mathématique de la supraconductivité dans un domaine à coins; méthodes semi-classiques et numériques. Thèse de doctorat, Université Paris XI - Orsay, 2003. 
  5. Bonnaillie, V. On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners. C. R. Math. Acad. Sci. Paris 336, 2 (2003), 135–140. Zbl1038.35043MR1969567
  6. Bonnaillie, V. Superconductivity in general domains. Prépublications d’Orsay 2004-09, 2004. 
  7. Bonnaillie, V. On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal. 41, 3-4 (2005), 215–258. Zbl1067.35054MR2127997
  8. Bonnaillie Noël, V. A posteriori error estimator for the eigenvalue problem associated to the Schrödinger operator with magnetic field. Numer. Math. 99, 2 (2004), 325–348. Zbl1061.65114MR2107434
  9. Bonnaillie Noël, V., and Dauge, M. Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corner. In preparation, 2005. Zbl1134.81021MR2254755
  10. Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B.Schrödinger operators with application to quantum mechanics and global geometry, study ed. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1987. Zbl0619.47005MR883643
  11. Dauge, M., and Helffer, B. Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators. J. Differential Equations 104, 2 (1993), 243–262. Zbl0784.34021MR1231468
  12. Fournais, S., and Helffer, B. Accurate eigenvalue estimates for the magnetic neumann laplacian. To appear in Annales Inst. Fourier (2005). Zbl1097.47020
  13. Ginzburg, V., and Landau, L. On the theory of the superconductivity. Soviet. Phys. JETP 20 (1950), 1064–1082. 
  14. Helffer, B.Semi-classical analysis for the Schrödinger operator and applications, vol. 1336 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988. Zbl0647.35002MR960278
  15. Helffer, B., and Mohamed, A. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138, 1 (1996), 40–81. Zbl0851.58046MR1391630
  16. Helffer, B., and Morame, A. Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185, 2 (2001), 604–680. Zbl1078.81023MR1856278
  17. Helffer, B., and Sjöstrand, J. Multiple wells in the semiclassical limit. I. Comm. Partial Differential Equations 9, 4 (1984), 337–408. Zbl0546.35053MR740094
  18. Jadallah, H. T. The onset of superconductivity in a domain with a corner. J. Math. Phys. 42, 9 (2001), 4101–4121. Zbl1063.82041MR1852538
  19. Lu, K., and Pan, X.-B. Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Phys. D 127, 1-2 (1999), 73–104. Zbl0934.35174MR1678383
  20. Lu, K., and Pan, X.-B. Gauge invariant eigenvalue problems in R 2 and in R + 2 . Trans. Amer. Math. Soc. 352, 3 (2000), 1247–1276. Zbl1053.35124MR1675206
  21. Martin, D. http://perso.univ-rennes1.fr/daniel.martin/melina. 
  22. Pan, X.-B. Upper critical field for superconductors with edges and corners. Calc. Var. Partial Differential Equations 14, 4 (2002), 447–482. Zbl1006.35090MR1911825
  23. Persson, A. Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8 (1960), 143–153. Zbl0145.14901MR133586
  24. Simon, B. Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 3 (1983), 295–308. Zbl0526.35027MR708966

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.